python类append()的实例源码

spot.py 文件源码 项目:SPOT 作者: Amossys-team 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def add(self,data):
        """
        This function allows to append data to the already fitted data

        Parameters
        ----------
        data : list, numpy.array, pandas.Series
            data to append
        """
        if isinstance(data,list):
            data = np.array(data)
        elif isinstance(data,np.ndarray):
            data = data
        elif isinstance(data,pd.Series):
            data = data.values
        else:
            print('This data format (%s) is not supported' % type(data))
            return

        self.data = np.append(self.data,data)
        return
spot.py 文件源码 项目:SPOT 作者: Amossys-team 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def add(self,data):
        """
        This function allows to append data to the already fitted data

        Parameters
        ----------
        data : list, numpy.array, pandas.Series
            data to append
        """
        if isinstance(data,list):
            data = np.array(data)
        elif isinstance(data,np.ndarray):
            data = data
        elif isinstance(data,pd.Series):
            data = data.values
        else:
            print('This data format (%s) is not supported' % type(data))
            return

        self.data = np.append(self.data,data)
        return
spot.py 文件源码 项目:SPOT 作者: Amossys-team 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def add(self,data):
        """
        This function allows to append data to the already fitted data

        Parameters
        ----------
        data : list, numpy.array, pandas.Series
            data to append
        """
        if isinstance(data,list):
            data = np.array(data)
        elif isinstance(data,np.ndarray):
            data = data
        elif isinstance(data,pd.Series):
            data = data.values
        else:
            print('This data format (%s) is not supported' % type(data))
            return

        self.data = np.append(self.data,data)
        return
minibatch.py 文件源码 项目:faster-rcnn-resnet 作者: Eniac-Xie 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
redwood.py 文件源码 项目:pauvre 作者: conchoecia 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def plotArc(start_angle, stop_angle, radius, width, **kwargs):
    """ write a docstring for this function"""
    numsegments = 100
    theta = np.radians(np.linspace(start_angle+90, stop_angle+90, numsegments))
    centerx = 0
    centery = 0
    x1 = -np.cos(theta) * (radius)
    y1 = np.sin(theta) * (radius)
    stack1 = np.column_stack([x1, y1])
    x2 = -np.cos(theta) * (radius + width)
    y2 = np.sin(theta) *  (radius + width)
    stack2 = np.column_stack([np.flip(x2, axis=0), np.flip(y2,axis=0)])
    #add the first values from the first set to close the polygon
    np.append(stack2, [[x1[0],y1[0]]], axis=0)
    arcArray = np.concatenate((stack1,stack2), axis=0)
    return patches.Polygon(arcArray, True, **kwargs), ((x1, y1), (x2, y2))
pyPPPETM_new.py 文件源码 项目:Parallel.GAMIT 作者: demiangomez 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def eval(self, t):
        # given a time vector t, return the design matrix column vector(s)

        if self.type is None:
            return np.array([])

        hl = np.zeros((t.shape[0],))
        ht = np.zeros((t.shape[0],))

        if self.type in (0,2):
            hl[t >= self.year] = np.log10(1 + (t[t >= self.year] - self.year) / self.T)

        if self.type in (1,2):
            ht[t >= self.year] = 1

        return np.append(ht,hl) if np.any(hl) else ht
pyPPPETM.py 文件源码 项目:Parallel.GAMIT 作者: demiangomez 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def LoadParameters(self, C):

        s = 0
        for jump in self.table:
            if not jump.type is None:
                if jump.params == 1 and jump.T != 0:
                    jump.a = np.append(jump.a, C[s:s + 1])

                elif jump.params == 1 and jump.T == 0:
                    jump.b = np.append(jump.b, C[s:s + 1])

                elif jump.params == 2:
                    jump.b = np.append(jump.b, C[s:s + 1])
                    jump.a = np.append(jump.a, C[s + 1:s + 2])

                s = s + jump.params
classifier.py 文件源码 项目:SentEval 作者: facebookresearch 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def trainepoch(self, X, y, epoch_size=1):
        self.model.train()
        for _ in range(self.nepoch, self.nepoch + epoch_size):
            permutation = np.random.permutation(len(X))
            all_costs = []
            for i in range(0, len(X), self.batch_size):
                # forward
                idx = torch.LongTensor(permutation[i:i + self.batch_size])
                if isinstance(X, torch.cuda.FloatTensor):
                    idx = idx.cuda()
                Xbatch = Variable(X.index_select(0, idx))
                ybatch = Variable(y.index_select(0, idx))
                if self.cudaEfficient:
                    Xbatch = Xbatch.cuda()
                    ybatch = ybatch.cuda()
                output = self.model(Xbatch)
                # loss
                loss = self.loss_fn(output, ybatch)
                all_costs.append(loss.data[0])
                # backward
                self.optimizer.zero_grad()
                loss.backward()
                # Update parameters
                self.optimizer.step()
        self.nepoch += epoch_size
aucmeter.py 文件源码 项目:tnt 作者: pytorch 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def add(self, output, target):
        if torch.is_tensor(output):
            output = output.cpu().squeeze().numpy()
        if torch.is_tensor(target):
            target = target.cpu().squeeze().numpy()
        elif isinstance(target, numbers.Number):
            target = np.asarray([target])
        assert np.ndim(output) == 1, \
            'wrong output size (1D expected)'
        assert np.ndim(target) == 1, \
            'wrong target size (1D expected)'
        assert output.shape[0] == target.shape[0], \
            'number of outputs and targets does not match'
        assert np.all(np.add(np.equal(target, 1), np.equal(target, 0))), \
            'targets should be binary (0, 1)'

        self.scores = np.append(self.scores, output)
        self.targets = np.append(self.targets, target)
Agent.py 文件源码 项目:combine-DT-with-NN-in-RL 作者: Burning-Bear 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def set_replay_buffer(self,record):
        """After get reward from environment, Agent should add new record into replay buffer.

        Args:
            record: dict type, has following key at least:
                'reward':
                'terminal':
                'next_observation':
        """
        new_state = self.observation2state(record['observation'])
        if type(self.current_state) == dict:
            raise Exception("current state type error")

        self.replay_buffer.add(self.current_state, record['action'], record['reward'], new_state,
                               float(record['terminal']), self.current_feature, record['target_ob'])
        # self.replayMemory.append([self.current_state,record['action'],record['reward'],new_state,record['terminal'],record['feature']])
        # if len(self.replayMemory) > REPLAY_MEMORY:
        #     self.replayMemory.popleft()
        self.current_state = new_state
        self.current_feature = list_to_dic(record['observation'])
fig3.py 文件源码 项目:OASIS 作者: j-friedrich 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def plot_trace(n=0, lg=False):
    plt.plot(trueC[n], c=col[2], clip_on=False, zorder=5, label='Truth')
    plt.plot(solution, c=col[0], clip_on=False, zorder=7, label='Estimate')
    plt.plot(y, c=col[7], alpha=.7, lw=1, clip_on=False, zorder=-10, label='Data')
    if lg:
        plt.legend(frameon=False, ncol=3, loc=(.1, .62), columnspacing=.8)
    spks = np.append(0, solution[1:] - g * solution[:-1])
    plt.text(800, 2.2, 'Correlation: %.3f' % (np.corrcoef(trueSpikes[n], spks)[0, 1]), size=24)
    plt.gca().set_xticklabels([])
    simpleaxis(plt.gca())
    plt.ylim(0, 2.85)
    plt.xlim(0, 1500)
    plt.yticks([0, 2], [0, 2])
    plt.xticks([300, 600, 900, 1200], ['', ''])


# init params
randtest.py 文件源码 项目:prbg 作者: Lakate 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def longestrunones8(binin):
    ''' The focus of the test is the longest run of ones within M-bit blocks. The purpose of this test is to determine whether the length of the longest run of ones within the tested sequence is consistent with the length of the longest run of ones that would be expected in a random sequence. Note that an irregularity in the expected length of the longest run of ones implies that there is also an irregularity in the expected length of the longest run of zeroes. Long runs of zeroes were not evaluated separately due to a concern about statistical independence among the tests.'''
    m = 8
    k = 3
    pik = [0.2148, 0.3672, 0.2305, 0.1875]
    blocks = [binin[xs*m:m+xs*m:] for xs in xrange(len(binin) / m)]
    n = len(blocks)
    counts1 = [xs+'01' for xs in blocks] # append the string 01 to guarantee the length of 1
    counts = [xs.replace('0',' ').split() for xs in counts1] # split into all parts
    counts2 = [map(len, xx) for xx in counts]
    counts4 = [(4 if xx > 4 else xx) for xx in map(max,counts2)]
    freqs = [counts4.count(spi) for spi in [1, 2, 3, 4]]
    chisqr1 = [(freqs[xx]-n*pik[xx])**2/(n*pik[xx]) for xx in xrange(4)]
    chisqr = reduce(su, chisqr1)
    pval = spc.gammaincc(k / 2.0, chisqr / 2.0)
    return pval
tdose_utilities.py 文件源码 项目:TDOSE 作者: kasperschmidt 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def SExtractorCat2fits(sextractorfiles,stringcols=[1],header=73,verbose=True):
    """
    Converting an ascii catalog with columns defined in header in the SExtractor format, i.e. one column
    name per row preceeded by a "#" and a column numner, and followed by a description (or any ascii file
    with the given setup) to a fits binary table

    --- INPUT ---
    sextractorfiles   List of ascii files to convert to fits
    stringcols        Columns to use a string format for (all other columns will be set to double float)
    header            Header containing the column names of the catalogs following the "SExtractor notation"
    verbose           Toggle verbosity

    --- EXAMPLE OF USE ---
    import glob
    import tdose_utilities as tu
    catalogs = glob.glob('/Volumes/DATABCKUP2/MUSE-Wide/catalogs_photometry/catalog_photometry_candels-cdfs-*.cat')
    tu.SExtractorCat2fits(catalogs,stringcols=[1],header=73,verbose=True)

    """
    for sexcat_ascii in sextractorfiles:
        asciiinfo = open(sexcat_ascii,'r')
        photcols = []
        for line in asciiinfo:
            if line.startswith('#'):
                colname = line.split()[2]
                photcols.append(colname)

        photfmt = ['D']*len(photcols)
        for stringcol in stringcols:
            photfmt[stringcol] = 'A60'

        sexcat_fits   = tu.ascii2fits(sexcat_ascii,asciinames=photcols,skip_header=header,fitsformat=photfmt,verbose=verbose)

# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
feature_extractor.py 文件源码 项目:confusion 作者: abhimanyudubey 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def layers(net):
    out = []
    for elem in net['layer']:
        out.append(elem['name'])
        for x in elem['top']:
            out.append(x)
    return set(out)
feature_extractor.py 文件源码 项目:confusion 作者: abhimanyudubey 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def get_layer(net,layer_name):
    out = []
    for elem in net['layer']:
        out.append(elem['name'])
    out_ind = []
    for i,elem in enumerate(out):
        if elem == layer_name:
            out_ind.append(i)
    return out_ind
coonswarp.py 文件源码 项目:RasterFairy 作者: Quasimondo 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def warpCloud( xyc, sourceGridPoints, targetGridPoints, warpQuality=9 ):

    sourceTree = KDTree(sourceGridPoints, leafsize=10)
    warpedXYC = []  
    for c in xyc:
        nearestEdge = sourceTree.query(c,k=warpQuality)
        nx = 0.0
        ny = 0.0
        ws = 0.0
        for i in range(warpQuality):
            p = targetGridPoints[nearestEdge[1][i]]
            w = nearestEdge[0][i]
            if w == 0.0:
                nx = p[0]
                ny = p[1]
                ws = 1.0
                break
            else:
                w = 1.0 / w
                nx += w * p[0]
                ny += w * p[1]
                ws += w

        warpedXYC.append([nx/ws,ny/ws])

    warpedXYC = np.array(warpedXYC)
    return warpedXYC
coonswarp.py 文件源码 项目:RasterFairy 作者: Quasimondo 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def getCoonsGrid( bounds, width=64, height=64, densities=None, paddingScale=1.0):

    targets = []
    for yi in range(height):
        for xi in range(width):
            targets.append(getCoonsPatchPointBez(bounds,xi,yi,width,height,densities=densities))

    targets = np.array(targets)
    tmean = [np.mean(targets[:,0]),np.mean(targets[:,1])]
    targets -= tmean
    targets *= paddingScale
    targets += tmean

    return targets
cumulative.py 文件源码 项目:zipline-chinese 作者: zhanghan1990 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def __repr__(self):
        statements = []
        for metric in self.METRIC_NAMES:
            value = getattr(self, metric)[-1]
            if isinstance(value, list):
                if len(value) == 0:
                    value = np.nan
                else:
                    value = value[-1]
            statements.append("{m}:{v}".format(m=metric, v=value))

        return '\n'.join(statements)
matrix.py 文件源码 项目:cellranger 作者: 10XGenomics 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def load_chunk(group, col_start, col_end):
        ''' Load a submatrix specified by the given column (barcode) range from an h5 group
        Args: col_start, col_end - half-open interval of column indices to load'''
        # Check bounds
        shape = getattr(group, cr_constants.H5_MATRIX_SHAPE_ATTR).read()
        assert col_start >= 0 and col_start < shape[1]
        assert col_end >= 0 and col_end <= shape[1]

        # Load genes and barcodes
        genes = GeneBCMatrix.load_genes_from_h5_group(group)
        bcs = GeneBCMatrix.load_bcs_from_h5_group(group)[col_start:col_end]
        matrix = GeneBCMatrix(genes, bcs)

        # Get views into full matrix
        data = getattr(group, cr_constants.H5_MATRIX_DATA_ATTR)
        indices = getattr(group, cr_constants.H5_MATRIX_INDICES_ATTR)
        indptr = getattr(group, cr_constants.H5_MATRIX_INDPTR_ATTR)

        # Determine extents of selected columns
        ind_start = indptr[col_start]
        if col_end < len(indptr)-1:
            # Last index (end-exclusive) is the start of the next column
            ind_end = indptr[col_end]
        else:
            # Last index is the last index in the matrix
            ind_end = len(data)

        chunk_data = data[ind_start:ind_end]
        chunk_indices = indices[ind_start:ind_end]
        chunk_indptr = np.append(indptr[col_start:col_end], ind_end) - ind_start
        chunk_shape = (shape[0], col_end - col_start)

        matrix.m = sp_sparse.csc_matrix((chunk_data, chunk_indices, chunk_indptr), shape=chunk_shape)

        return matrix
matrix.py 文件源码 项目:cellranger 作者: 10XGenomics 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def load_genomes_from_h5(filename):
        genomes = []
        with tables.open_file(filename, 'r') as f:
            for group in f.list_nodes(f.root):
                genome = group._v_name
                genomes.append(genome)
        return genomes


问题


面经


文章

微信
公众号

扫码关注公众号