python类sin()的实例源码

redwood.py 文件源码 项目:pauvre 作者: conchoecia 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plotArc(start_angle, stop_angle, radius, width, **kwargs):
    """ write a docstring for this function"""
    numsegments = 100
    theta = np.radians(np.linspace(start_angle+90, stop_angle+90, numsegments))
    centerx = 0
    centery = 0
    x1 = -np.cos(theta) * (radius)
    y1 = np.sin(theta) * (radius)
    stack1 = np.column_stack([x1, y1])
    x2 = -np.cos(theta) * (radius + width)
    y2 = np.sin(theta) *  (radius + width)
    stack2 = np.column_stack([np.flip(x2, axis=0), np.flip(y2,axis=0)])
    #add the first values from the first set to close the polygon
    np.append(stack2, [[x1[0],y1[0]]], axis=0)
    arcArray = np.concatenate((stack1,stack2), axis=0)
    return patches.Polygon(arcArray, True, **kwargs), ((x1, y1), (x2, y2))
pyPPPETM_new.py 文件源码 项目:Parallel.GAMIT 作者: demiangomez 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def ct2lg(dX, dY, dZ, lat, lon):

    n = dX.size
    R = np.zeros((3, 3, n))

    R[0, 0, :] = -np.multiply(np.sin(np.deg2rad(lat)), np.cos(np.deg2rad(lon)))
    R[0, 1, :] = -np.multiply(np.sin(np.deg2rad(lat)), np.sin(np.deg2rad(lon)))
    R[0, 2, :] = np.cos(np.deg2rad(lat))
    R[1, 0, :] = -np.sin(np.deg2rad(lon))
    R[1, 1, :] = np.cos(np.deg2rad(lon))
    R[1, 2, :] = np.zeros((1, n))
    R[2, 0, :] = np.multiply(np.cos(np.deg2rad(lat)), np.cos(np.deg2rad(lon)))
    R[2, 1, :] = np.multiply(np.cos(np.deg2rad(lat)), np.sin(np.deg2rad(lon)))
    R[2, 2, :] = np.sin(np.deg2rad(lat))

    dxdydz = np.column_stack((np.column_stack((dX, dY)), dZ))

    RR = np.reshape(R[0, :, :], (3, n))
    dx = np.sum(np.multiply(RR, dxdydz.transpose()), axis=0)
    RR = np.reshape(R[1, :, :], (3, n))
    dy = np.sum(np.multiply(RR, dxdydz.transpose()), axis=0)
    RR = np.reshape(R[2, :, :], (3, n))
    dz = np.sum(np.multiply(RR, dxdydz.transpose()), axis=0)

    return dx, dy, dz
pyPPPETM_new.py 文件源码 项目:Parallel.GAMIT 作者: demiangomez 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def distance(self, lon1, lat1, lon2, lat2):
        """
        Calculate the great circle distance between two points
        on the earth (specified in decimal degrees)
        """

        # convert decimal degrees to radians
        lon1 = lon1*pi/180
        lat1 = lat1*pi/180
        lon2 = lon2*pi/180
        lat2 = lat2*pi/180
        # haversine formula
        dlon = lon2 - lon1
        dlat = lat2 - lat1
        a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2)**2
        c = 2 * np.arcsin(np.sqrt(a))
        km = 6371 * c
        return km
pyPPPETM_full_cov.py 文件源码 项目:Parallel.GAMIT 作者: demiangomez 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def distance(self, lon1, lat1, lon2, lat2):
        """
        Calculate the great circle distance between two points
        on the earth (specified in decimal degrees)
        """

        # convert decimal degrees to radians
        lon1 = lon1*pi/180
        lat1 = lat1*pi/180
        lon2 = lon2*pi/180
        lat2 = lat2*pi/180
        # haversine formula
        dlon = lon2 - lon1
        dlat = lat2 - lat1
        a = numpy.sin(dlat/2)**2 + numpy.cos(lat1) * numpy.cos(lat2) * numpy.sin(dlon/2)**2
        c = 2 * numpy.arcsin(numpy.sqrt(a))
        km = 6371 * c
        return km
pyPPPETM.py 文件源码 项目:Parallel.GAMIT 作者: demiangomez 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def ct2lg(dX, dY, dZ, lat, lon):

    n = dX.size
    R = np.zeros((3, 3, n))

    R[0, 0, :] = -np.multiply(np.sin(np.deg2rad(lat)), np.cos(np.deg2rad(lon)))
    R[0, 1, :] = -np.multiply(np.sin(np.deg2rad(lat)), np.sin(np.deg2rad(lon)))
    R[0, 2, :] = np.cos(np.deg2rad(lat))
    R[1, 0, :] = -np.sin(np.deg2rad(lon))
    R[1, 1, :] = np.cos(np.deg2rad(lon))
    R[1, 2, :] = np.zeros((1, n))
    R[2, 0, :] = np.multiply(np.cos(np.deg2rad(lat)), np.cos(np.deg2rad(lon)))
    R[2, 1, :] = np.multiply(np.cos(np.deg2rad(lat)), np.sin(np.deg2rad(lon)))
    R[2, 2, :] = np.sin(np.deg2rad(lat))

    dxdydz = np.column_stack((np.column_stack((dX, dY)), dZ))

    RR = np.reshape(R[0, :, :], (3, n))
    dx = np.sum(np.multiply(RR, dxdydz.transpose()), axis=0)
    RR = np.reshape(R[1, :, :], (3, n))
    dy = np.sum(np.multiply(RR, dxdydz.transpose()), axis=0)
    RR = np.reshape(R[2, :, :], (3, n))
    dz = np.sum(np.multiply(RR, dxdydz.transpose()), axis=0)

    return dx, dy, dz
pyPPPETM.py 文件源码 项目:Parallel.GAMIT 作者: demiangomez 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def distance(lon1, lat1, lon2, lat2):
    """
    Calculate the great circle distance between two points
    on the earth (specified in decimal degrees)
    """

    # convert decimal degrees to radians
    lon1 = lon1*pi/180
    lat1 = lat1*pi/180
    lon2 = lon2*pi/180
    lat2 = lat2*pi/180
    # haversine formula
    dlon = lon2 - lon1
    dlat = lat2 - lat1
    a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2)**2
    c = 2 * np.arcsin(np.sqrt(a))
    km = 6371 * c
    return km
pyPPPETM.py 文件源码 项目:Parallel.GAMIT 作者: demiangomez 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def todictionary(self, time_series=False):
        # convert the ETM adjustment into a dirtionary
        # optionally, output the whole time series as well

        # start with the parameters
        etm = dict()
        etm['Linear'] = {'tref': self.Linear.tref, 'params': self.Linear.values.tolist()}
        etm['Jumps'] = [{'type':jump.type, 'year': jump.year, 'a': jump.a.tolist(), 'b': jump.b.tolist(), 'T': jump.T} for jump in self.Jumps.table]
        etm['Periodic'] = {'frequencies': self.Periodic.frequencies, 'sin': self.Periodic.sin.tolist(), 'cos': self.Periodic.cos.tolist()}

        if time_series:
            ts = dict()
            ts['t'] = self.ppp_soln.t.tolist()
            ts['x'] = self.ppp_soln.x.tolist()
            ts['y'] = self.ppp_soln.y.tolist()
            ts['z'] = self.ppp_soln.z.tolist()

            etm['time_series'] = ts

        return etm
pyPPPETM_double.py 文件源码 项目:Parallel.GAMIT 作者: demiangomez 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def ct2lg(self, dX, dY, dZ, lat, lon):

        n = dX.size
        R = numpy.zeros((3, 3, n))

        R[0, 0, :] = -numpy.multiply(numpy.sin(numpy.deg2rad(lat)), numpy.cos(numpy.deg2rad(lon)))
        R[0, 1, :] = -numpy.multiply(numpy.sin(numpy.deg2rad(lat)), numpy.sin(numpy.deg2rad(lon)))
        R[0, 2, :] = numpy.cos(numpy.deg2rad(lat))
        R[1, 0, :] = -numpy.sin(numpy.deg2rad(lon))
        R[1, 1, :] = numpy.cos(numpy.deg2rad(lon))
        R[1, 2, :] = numpy.zeros((1, n))
        R[2, 0, :] = numpy.multiply(numpy.cos(numpy.deg2rad(lat)), numpy.cos(numpy.deg2rad(lon)))
        R[2, 1, :] = numpy.multiply(numpy.cos(numpy.deg2rad(lat)), numpy.sin(numpy.deg2rad(lon)))
        R[2, 2, :] = numpy.sin(numpy.deg2rad(lat))

        dxdydz = numpy.column_stack((numpy.column_stack((dX, dY)), dZ))

        RR = numpy.reshape(R[0, :, :], (3, n))
        dx = numpy.sum(numpy.multiply(RR, dxdydz.transpose()), axis=0)
        RR = numpy.reshape(R[1, :, :], (3, n))
        dy = numpy.sum(numpy.multiply(RR, dxdydz.transpose()), axis=0)
        RR = numpy.reshape(R[2, :, :], (3, n))
        dz = numpy.sum(numpy.multiply(RR, dxdydz.transpose()), axis=0)

        return dx, dy, dz
pyPPPETM_double.py 文件源码 项目:Parallel.GAMIT 作者: demiangomez 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def distance(self, lon1, lat1, lon2, lat2):
        """
        Calculate the great circle distance between two points
        on the earth (specified in decimal degrees)
        """

        # convert decimal degrees to radians
        lon1 = lon1*pi/180
        lat1 = lat1*pi/180
        lon2 = lon2*pi/180
        lat2 = lat2*pi/180
        # haversine formula
        dlon = lon2 - lon1
        dlat = lat2 - lat1
        a = numpy.sin(dlat/2)**2 + numpy.cos(lat1) * numpy.cos(lat2) * numpy.sin(dlon/2)**2
        c = 2 * numpy.arcsin(numpy.sqrt(a))
        km = 6371 * c
        return km
pyPPPETM_old.py 文件源码 项目:Parallel.GAMIT 作者: demiangomez 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def distance(self, lon1, lat1, lon2, lat2):
        """
        Calculate the great circle distance between two points
        on the earth (specified in decimal degrees)
        """

        # convert decimal degrees to radians
        lon1 = lon1*pi/180
        lat1 = lat1*pi/180
        lon2 = lon2*pi/180
        lat2 = lat2*pi/180
        # haversine formula
        dlon = lon2 - lon1
        dlat = lat2 - lat1
        a = numpy.sin(dlat/2)**2 + numpy.cos(lat1) * numpy.cos(lat2) * numpy.sin(dlon/2)**2
        c = 2 * numpy.arcsin(numpy.sqrt(a))
        km = 6371 * c
        return km
pyPPPETM_old.py 文件源码 项目:Parallel.GAMIT 作者: demiangomez 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def ct2lg(self, dX, dY, dZ, lat, lon):

        n = dX.size
        R = numpy.zeros((3, 3, n))

        R[0, 0, :] = -numpy.multiply(numpy.sin(numpy.deg2rad(lat)), numpy.cos(numpy.deg2rad(lon)))
        R[0, 1, :] = -numpy.multiply(numpy.sin(numpy.deg2rad(lat)), numpy.sin(numpy.deg2rad(lon)))
        R[0, 2, :] = numpy.cos(numpy.deg2rad(lat))
        R[1, 0, :] = -numpy.sin(numpy.deg2rad(lon))
        R[1, 1, :] = numpy.cos(numpy.deg2rad(lon))
        R[1, 2, :] = numpy.zeros((1, n))
        R[2, 0, :] = numpy.multiply(numpy.cos(numpy.deg2rad(lat)), numpy.cos(numpy.deg2rad(lon)))
        R[2, 1, :] = numpy.multiply(numpy.cos(numpy.deg2rad(lat)), numpy.sin(numpy.deg2rad(lon)))
        R[2, 2, :] = numpy.sin(numpy.deg2rad(lat))

        dxdydz = numpy.column_stack((numpy.column_stack((dX, dY)), dZ))

        RR = numpy.reshape(R[0, :, :], (3, n))
        dx = numpy.sum(numpy.multiply(RR, dxdydz.transpose()), axis=0)
        RR = numpy.reshape(R[1, :, :], (3, n))
        dy = numpy.sum(numpy.multiply(RR, dxdydz.transpose()), axis=0)
        RR = numpy.reshape(R[2, :, :], (3, n))
        dz = numpy.sum(numpy.multiply(RR, dxdydz.transpose()), axis=0)

        return dx, dy, dz
transformations.py 文件源码 项目:esys-pbi 作者: fsxfreak 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def orthogonalization_matrix(lengths, angles):
    """Return orthogonalization matrix for crystallographic cell coordinates.

    Angles are expected in degrees.

    The de-orthogonalization matrix is the inverse.

    >>> O = orthogonalization_matrix([10, 10, 10], [90, 90, 90])
    >>> numpy.allclose(O[:3, :3], numpy.identity(3, float) * 10)
    True
    >>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7])
    >>> numpy.allclose(numpy.sum(O), 43.063229)
    True

    """
    a, b, c = lengths
    angles = numpy.radians(angles)
    sina, sinb, _ = numpy.sin(angles)
    cosa, cosb, cosg = numpy.cos(angles)
    co = (cosa * cosb - cosg) / (sina * sinb)
    return numpy.array([
        [ a*sinb*math.sqrt(1.0-co*co),  0.0,    0.0, 0.0],
        [-a*sinb*co,                    b*sina, 0.0, 0.0],
        [ a*cosb,                       b*cosa, c,   0.0],
        [ 0.0,                          0.0,    0.0, 1.0]])
InductionSphereFEM.py 文件源码 项目:em_examples 作者: geoscixyz 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def plotPlaceTxRxSphereXY(Ax,xtx,ytx,xrx,yrx,x0,y0,a):


    Xlim = Ax.get_xlim()
    Ylim = Ax.get_ylim()

    FS = 20

    Ax.scatter(xtx,ytx,s=100,color='k')
    Ax.text(xtx-0.75,ytx+1.5,'$\mathbf{Tx}$',fontsize=FS+6)
    Ax.scatter(xrx,yrx,s=100,color='k')
    Ax.text(xrx-0.75,yrx-4,'$\mathbf{Rx}$',fontsize=FS+6)

    xs = x0 + a*np.cos(np.linspace(0,2*np.pi,41))
    ys = y0 + a*np.sin(np.linspace(0,2*np.pi,41))

    Ax.plot(xs,ys,ls=':',color='k',linewidth=3)

    Ax.set_xbound(Xlim)
    Ax.set_ybound(Ylim)

    return Ax
InductionLoop.py 文件源码 项目:em_examples 作者: geoscixyz 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def calc_IndCurrent_cos_range(self,f,t):
        """Induced current over a range of times"""

        Bpx = self.Bpx
        Bpz = self.Bpz
        a2  = self.a2
        azm = np.pi*self.azm/180.
        R   = self.R
        L   = self.L

        w = 2*np.pi*f

        Ax = np.pi*a2**2*np.sin(azm)
        Az = np.pi*a2**2*np.cos(azm)

        Phi = (Ax*Bpx + Az*Bpz)
        phi = np.arctan(R/(w*L))-np.pi  # This is the phase and not phase lag
        Is  = -(w*Phi/(R*np.sin(phi) + w*L*np.cos(phi)))*np.cos(w*t + phi)
        Ire = -(w*Phi/(R*np.sin(phi) + w*L*np.cos(phi)))*np.cos(w*t)*np.cos(phi)
        Iim =  (w*Phi/(R*np.sin(phi) + w*L*np.cos(phi)))*np.sin(w*t)*np.sin(phi)

        return Ire,Iim,Is,phi
sudoku_steps.py 文件源码 项目:pyku 作者: dubvulture 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def is_grid(self, grid, image):
        """
        Checks the "gridness" by analyzing the results of a hough transform.
        :param grid: binary image
        :return: wheter the object in the image might be a grid or not
        """
        #   - Distance resolution = 1 pixel
        #   - Angle resolution = 1° degree for high line density
        #   - Threshold = 144 hough intersections
        #        8px digit + 3*2px white + 2*1px border = 16px per cell
        #           => 144x144 grid
        #        144 - minimum number of points on the same line
        #       (but due to imperfections in the binarized image it's highly
        #        improbable to detect a 144x144 grid)
        lines = cv2.HoughLines(grid, 1, np.pi / 180, 144)

        if lines is not None and np.size(lines) >= 20:
            lines = lines.reshape((lines.size / 2), 2)
            # theta in [0, pi] (theta > pi => rho < 0)
            # normalise theta in [-pi, pi] and negatives rho
            lines[lines[:, 0] < 0, 1] -= np.pi
            lines[lines[:, 0] < 0, 0] *= -1

            criteria = (cv2.TERM_CRITERIA_EPS, 0, 0.01)
            # split lines into 2 groups to check whether they're perpendicular
            if cv2.__version__[0] == '2':
                density, clmap, centers = cv2.kmeans(
                    lines[:, 1], 2, criteria, 5, cv2.KMEANS_RANDOM_CENTERS)
            else:
                density, clmap, centers = cv2.kmeans(
                    lines[:, 1], 2, None, criteria,
                    5, cv2.KMEANS_RANDOM_CENTERS)

            if self.debug:
                self.save_hough(lines, clmap)

            # Overall variance from respective centers
            var = density / np.size(clmap)
            sin = abs(np.sin(centers[0] - centers[1]))
            # It is probably a grid only if:
            #   - centroids difference is almost a 90° angle (+-15° limit)
            #   - variance is less than 5° (keeping in mind surface distortions)
            return sin > 0.99 and var <= (5*np.pi / 180) ** 2
        else:
            return False
sudoku_steps.py 文件源码 项目:pyku 作者: dubvulture 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def save_hough(self, lines, clmap):
        """
        :param lines: (rho, theta) pairs
        :param clmap: clusters assigned to lines
        :return: None
        """
        height, width = self.image.shape
        ratio = 600. * (self.step+1) / min(height, width)
        temp = cv2.resize(self.image, None, fx=ratio, fy=ratio,
                          interpolation=cv2.INTER_CUBIC)
        temp = cv2.cvtColor(temp, cv2.COLOR_GRAY2BGR)
        colors = [(0, 127, 255), (255, 0, 127)]

        for i in range(0, np.size(lines) / 2):
            rho = lines[i, 0]
            theta = lines[i, 1]
            color = colors[clmap[i, 0]]
            if theta < np.pi / 4 or theta > 3 * np.pi / 4:
                pt1 = (rho / np.cos(theta), 0)
                pt2 = (rho - height * np.sin(theta) / np.cos(theta), height)
            else:
                pt1 = (0, rho / np.sin(theta))
                pt2 = (width, (rho - width * np.cos(theta)) / np.sin(theta))
            pt1 = (int(pt1[0]), int(pt1[1]))
            pt2 = (int(pt2[0]), int(pt2[1]))
            cv2.line(temp, pt1, pt2, color, 5)

        self.save2image(temp)
sudoku.py 文件源码 项目:pyku 作者: dubvulture 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def is_grid(self, grid, image):
        """
        Checks the "gridness" by analyzing the results of a hough transform.
        :param grid: binary image
        :return: wheter the object in the image might be a grid or not
        """
        #   - Distance resolution = 1 pixel
        #   - Angle resolution = 1° degree for high line density
        #   - Threshold = 144 hough intersections
        #        8px digit + 3*2px white + 2*1px border = 16px per cell
        #           => 144x144 grid
        #        144 - minimum number of points on the same line
        #       (but due to imperfections in the binarized image it's highly
        #        improbable to detect a 144x144 grid)

        lines = cv2.HoughLines(grid, 1, np.pi / 180, 144)

        if lines is not None and np.size(lines) >= 20:
            lines = lines.reshape((lines.size/2), 2)
            # theta in [0, pi] (theta > pi => rho < 0)
            # normalise theta in [-pi, pi] and negatives rho
            lines[lines[:, 0] < 0, 1] -= np.pi
            lines[lines[:, 0] < 0, 0] *= -1

            criteria = (cv2.TERM_CRITERIA_EPS, 0, 0.01)
            # split lines into 2 groups to check whether they're perpendicular
            if cv2.__version__[0] == '2':
                density, clmap, centers = cv2.kmeans(
                    lines[:, 1], 2, criteria,
                    5, cv2.KMEANS_RANDOM_CENTERS)
            else:
                density, clmap, centers = cv2.kmeans(
                    lines[:, 1], 2, None, criteria,
                    5, cv2.KMEANS_RANDOM_CENTERS)

            # Overall variance from respective centers
            var = density / np.size(clmap)
            sin = abs(np.sin(centers[0] - centers[1]))
            # It is probably a grid only if:
            #   - centroids difference is almost a 90° angle (+-15° limit)
            #   - variance is less than 5° (keeping in mind surface distortions)
            return sin > 0.99 and var <= (5*np.pi / 180) ** 2
        else:
            return False
tdose_utilities.py 文件源码 项目:TDOSE 作者: kasperschmidt 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def build_2D_cov_matrix(sigmax,sigmay,angle,verbose=True):
    """
    Build a covariance matrix for a 2D multivariate Gaussian

    --- INPUT ---
    sigmax          Standard deviation of the x-compoent of the multivariate Gaussian
    sigmay          Standard deviation of the y-compoent of the multivariate Gaussian
    angle           Angle to rotate matrix by in degrees (clockwise) to populate covariance cross terms
    verbose         Toggle verbosity
    --- EXAMPLE OF USE ---
    import tdose_utilities as tu
    covmatrix = tu.build_2D_cov_matrix(3,1,35)

    """
    if verbose: print ' - Build 2D covariance matrix with varinaces (x,y)=('+str(sigmax)+','+str(sigmay)+\
                      ') and then rotated '+str(angle)+' degrees'
    cov_orig      = np.zeros([2,2])
    cov_orig[0,0] = sigmay**2.0
    cov_orig[1,1] = sigmax**2.0

    angle_rad     = (180.0-angle) * np.pi/180.0 # The (90-angle) makes sure the same convention as DS9 is used
    c, s          = np.cos(angle_rad), np.sin(angle_rad)
    rotmatrix     = np.matrix([[c, -s], [s, c]])

    cov_rot       = np.dot(np.dot(rotmatrix,cov_orig),np.transpose(rotmatrix))  # performing rot * cov * rot^T

    return cov_rot
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
poisson_vec.py 文件源码 项目:pyballd 作者: Yurlungur 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def residual(r,theta,u,d):
    out = np.empty_like(u)
    out[0] = (2*np.sin(theta)*r*d(u[0],1,0)
              + r*r*np.sin(theta)*d(u[0],2,0)
              + np.cos(theta)*d(u[0],0,1)
              + np.sin(theta)*d(u[1],0,2))
    out[1] = (2*np.sin(theta)*r*d(u[1],1,0)
              + r*r*np.sin(theta)*d(u[1],2,0)
              + np.cos(theta)*d(u[1],0,1)
              + np.sin(theta)*d(u[1],0,2))
    return out
poisson.py 文件源码 项目:pyballd 作者: Yurlungur 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def residual(r,theta,u,d):
    u = u[0]
    out = (2*np.sin(theta)*r*d(u,1,0)
           + r*r*np.sin(theta)*d(u,2,0)
           + np.cos(theta)*d(u,0,1)
           + np.sin(theta)*d(u,0,2))
    out = out.reshape(tuple([1]) + out.shape)
    return out


问题


面经


文章

微信
公众号

扫码关注公众号