python类hstack()的实例源码

runscript.py 文件源码 项目:AutoSleepScorerDev 作者: skjerns 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def feat_ann(c=0):
        batch_size =700
        feats_eeg = scipy.stats.zscore(tools.feat_eeg(data[:,:,0]))
        feats_emg = scipy.stats.zscore(tools.feat_emg(data[:,:,1]))

        feats_eog = scipy.stats.zscore(tools.feat_eog(data[:,:,2]))
        feats_all = np.hstack([feats_eeg, feats_emg, feats_eog])
        results = dict()
        r = cv(feats_eeg, target, groups, models.ann, name = 'eeg', stop_after=15,batch_size=batch_size, counter=c, plot=plot)
        results.update(r)
        r = cv(np.hstack([feats_eeg,feats_eog]), target, groups, models.ann, name = 'eeg+eog',batch_size=batch_size, stop_after=15, counter=c, plot=plot)  
        results.update(r)
        r = cv(np.hstack([feats_eeg,feats_emg]), target, groups, models.ann, name = 'eeg+emg',batch_size=batch_size, stop_after=15, counter=c, plot=plot) 
        results.update(r)
        r = cv(feats_all, target, groups, models.ann, name = 'all',batch_size=batch_size, stop_after=15, counter=c, plot=plot)
        results.update(r)
        with open('results_electrodes_feat.pkl', 'wb') as f:  pickle.dump(results, f)
rigid_transformations.py 文件源码 项目:autolab_core 作者: BerkeleyAutomation 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def rotation_from_axes(x_axis, y_axis, z_axis):
        """Convert specification of axis in target frame to
        a rotation matrix from source to target frame.

        Parameters
        ----------
        x_axis : :obj:`numpy.ndarray` of float
            A normalized 3-vector for the target frame's x-axis.

        y_axis : :obj:`numpy.ndarray` of float
            A normalized 3-vector for the target frame's y-axis.

        z_axis : :obj:`numpy.ndarray` of float
            A normalized 3-vector for the target frame's z-axis.

        Returns
        -------
        :obj:`numpy.ndarray` of float
            A 3x3 rotation matrix that transforms from a source frame to the
            given target frame.
        """
        return np.hstack((x_axis[:,np.newaxis], y_axis[:,np.newaxis], z_axis[:,np.newaxis]))
crowd_model.py 文件源码 项目:code-uai16 作者: thanhan 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def online_em(self, new_labels, w = 0.1, num_it = 3, no_train = False):
        if len(new_labels) == 0: return

        n = self.lc.n
        l = len(new_labels)
        self.lc.add_labels(new_labels, l * [None])
        self.N = self.lc.n
        self.qz = np.hstack((self.qz, np.zeros(l)))
        self.maj_lab = np.hstack((self.maj_lab, np.zeros(l)))

        self.init_prob(id_range = (n, self.lc.n))

        if no_train: return

        self.m_step(id_range = (n, self.lc.n), w = w)

        for it in range(num_it):
            self.e_step(id_range = (n, self.lc.n), w = w)
            self.m_step(id_range = (n, self.lc.n), w = w)
linear_time.py 文件源码 项目:kernel_goodness_of_fit 作者: karlnapf 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def compute_pvalue(self, samples):

        samples = self._make_two_dimensional(samples)

        self.shape = samples.shape[1]

        stein_statistics = []


        for f in range(self.number_of_random_frequencies):
            # This is a little bit of a bug , but th holds even for this choice
            random_frequency = np.random.randn()
            matrix_of_stats = self.stein_stat(random_frequency=random_frequency, samples=samples)
            stein_statistics.append(matrix_of_stats)

        normal_under_null = np.hstack(stein_statistics)
        normal_under_null = self._make_two_dimensional(normal_under_null)

        return mahalanobis_distance(normal_under_null, normal_under_null.shape[1])
handpose_evaluation.py 文件源码 项目:deep-prior 作者: moberweger 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plotJoints(self, ax, joint, color='nice', jcolor=None):
        """
        Plot connected joints
        :type ax: axis to plot on
        :type joint: joints to connect
        :type color: line color
        """

        color_index = 0
        for i in range(joint.shape[0]):
            ax.scatter(joint[i, 0], joint[i, 1], c=(self.jointcolors[color_index % len(self.jointcolors)] if jcolor is None else jcolor), marker='.', s=400)
            color_index += 1
        for i in range(len(self.jointConnections)):
            ax.plot(numpy.hstack((joint[self.jointConnections[i][0], 0], joint[self.jointConnections[i][1], 0])),
                    numpy.hstack((joint[self.jointConnections[i][0], 1], joint[self.jointConnections[i][1], 1])),
                    c=(color if color is not 'nice' else self.jointConnectionColors[i]), linewidth=2.0)
arma.py 文件源码 项目:pyrsss 作者: butala 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def arma_predictor_model(x, y, m, n):
    """
    Return matrix and vector relating (*m*, *n*) ARMA model to the
    input *x* and output *y*. In other words, construct the max(*m*,
    *n*) - 1 by (*m* - 1 + *n* - 1) matrix A such that

    y[k] + a_1 y[k - 1] + ... + a_m y[k - m] = b_1 x[k - 1] + ... + b_n x[k - n]

    and the vector b corresponds to y[k] for k >= max(*m*, *n*).
    """
    assert len(x) == len(y)
    k = max(m, n)
    A1 = SP.linalg.toeplitz(-y[k:-1], r=-y[(k - m):k][::-1])
    A2 = SP.linalg.toeplitz(x[k:-1], r=x[(k - n):k][::-1])
    A = NP.hstack((A1, A2))
    b = y[k+1:]
    return A, b
image_processing.py 文件源码 项目:mx-rfcn 作者: giorking 项目源码 文件源码 阅读 47 收藏 0 点赞 0 评论 0
def tensor_vstack(tensor_list, pad=0):
    """
    vertically stack tensors
    :param tensor_list: list of tensor to be stacked vertically
    :param pad: label to pad with
    :return: tensor with max shape
    """
    ndim = len(tensor_list[0].shape)
    if ndim == 1:
        return np.hstack(tensor_list)
    dimensions = [0]
    for dim in range(1, ndim):
        dimensions.append(max([tensor.shape[dim] for tensor in tensor_list]))
    for ind, tensor in enumerate(tensor_list):
        pad_shape = [(0, 0)]
        for dim in range(1, ndim):
            pad_shape.append((0, dimensions[dim] - tensor.shape[dim]))
        tensor_list[ind] = np.lib.pad(tensor, pad_shape, 'constant', constant_values=pad)
    all_tensor = np.vstack(tensor_list)
    return all_tensor
loader.py 文件源码 项目:mx-rfcn 作者: giorking 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def reset(self):
        self.cur = 0
        if self.shuffle:
            if config.TRAIN.ASPECT_GROUPING:
                widths = np.array([r['width'] for r in self.roidb])
                heights = np.array([r['height'] for r in self.roidb])
                horz = (widths >= heights)
                vert = np.logical_not(horz)
                horz_inds = np.where(horz)[0]
                vert_inds = np.where(vert)[0]
                inds = np.hstack((np.random.permutation(horz_inds), np.random.permutation(vert_inds)))
                if inds.shape[0] % 2:
                    inds_ = np.reshape(inds[:-1], (-1, 2))
                    row_perm = np.random.permutation(np.arange(inds_.shape[0]))
                    inds[:-1] = np.reshape(inds_[row_perm, :], (-1, ))
                else:
                    inds = np.reshape(inds, (-1, 2))
                    row_perm = np.random.permutation(np.arange(inds.shape[0]))
                    inds = np.reshape(inds[row_perm, :], (-1, ))
                self.index = inds
            else:
                np.random.shuffle(self.index)
loader.py 文件源码 项目:mx-rfcn 作者: giorking 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def reset(self):
        self.cur = 0
        if self.shuffle:
            if config.TRAIN.ASPECT_GROUPING:
                widths = np.array([r['width'] for r in self.roidb])
                heights = np.array([r['height'] for r in self.roidb])
                horz = (widths >= heights)
                vert = np.logical_not(horz)
                horz_inds = np.where(horz)[0]
                vert_inds = np.where(vert)[0]
                inds = np.hstack((np.random.permutation(horz_inds), np.random.permutation(vert_inds)))
                if inds.shape[0] % 2:
                    inds_ = np.reshape(inds[:-1], (-1, 2))
                    row_perm = np.random.permutation(np.arange(inds_.shape[0]))
                    inds[:-1] = np.reshape(inds_[row_perm, :], (-1, ))
                else:
                    inds = np.reshape(inds, (-1, 2))
                    row_perm = np.random.permutation(np.arange(inds.shape[0]))
                    inds = np.reshape(inds[row_perm, :], (-1, ))
                self.index = inds
            else:
                np.random.shuffle(self.index)
layer.py 文件源码 项目:adversarial-frcnn 作者: xiaolonw 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def _shuffle_roidb_inds(self):
        """Randomly permute the training roidb."""
        if cfg.TRAIN.ASPECT_GROUPING:
            widths = np.array([r['width'] for r in self._roidb])
            heights = np.array([r['height'] for r in self._roidb])
            horz = (widths >= heights)
            vert = np.logical_not(horz)
            horz_inds = np.where(horz)[0]
            vert_inds = np.where(vert)[0]
            inds = np.hstack((
                np.random.permutation(horz_inds),
                np.random.permutation(vert_inds)))
            inds = np.reshape(inds, (-1, 2))
            row_perm = np.random.permutation(np.arange(inds.shape[0]))
            inds = np.reshape(inds[row_perm, :], (-1,))
            self._perm = inds
        else:
            self._perm = np.random.permutation(np.arange(len(self._roidb)))
        self._cur = 0
generate.py 文件源码 项目:adversarial-frcnn 作者: xiaolonw 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def imdb_proposals(net, imdb):
    """Generate RPN proposals on all images in an imdb."""

    _t = Timer()
    imdb_boxes = [[] for _ in xrange(imdb.num_images)]
    for i in xrange(imdb.num_images):
        im = cv2.imread(imdb.image_path_at(i))
        _t.tic()
        imdb_boxes[i], scores = im_proposals(net, im)
        _t.toc()
        print 'im_proposals: {:d}/{:d} {:.3f}s' \
              .format(i + 1, imdb.num_images, _t.average_time)
        if 0:
            dets = np.hstack((imdb_boxes[i], scores))
            # from IPython import embed; embed()
            _vis_proposals(im, dets[:3, :], thresh=0.9)
            plt.show()

    return imdb_boxes
delaunay2D.py 文件源码 项目:pyDelaunay2D 作者: jmespadero 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def circumcenter(self, tri):
        """Compute circumcenter and circumradius of a triangle in 2D.
        Uses an extension of the method described here:
        http://www.ics.uci.edu/~eppstein/junkyard/circumcenter.html
        """
        pts = np.asarray([self.coords[v] for v in tri])
        pts2 = np.dot(pts, pts.T)
        A = np.bmat([[2 * pts2, [[1],
                                 [1],
                                 [1]]],
                      [[[1, 1, 1, 0]]]])

        b = np.hstack((np.sum(pts * pts, axis=1), [1]))
        x = np.linalg.solve(A, b)
        bary_coords = x[:-1]
        center = np.dot(bary_coords, pts)

        # radius = np.linalg.norm(pts[0] - center) # euclidean distance
        radius = np.sum(np.square(pts[0] - center))  # squared distance
        return (center, radius)
layer.py 文件源码 项目:faster-rcnn-resnet 作者: Eniac-Xie 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def _shuffle_roidb_inds(self):
        """Randomly permute the training roidb."""
        if cfg.TRAIN.ASPECT_GROUPING:
            widths = np.array([r['width'] for r in self._roidb])
            heights = np.array([r['height'] for r in self._roidb])
            horz = (widths >= heights)
            vert = np.logical_not(horz)
            horz_inds = np.where(horz)[0]
            vert_inds = np.where(vert)[0]
            inds = np.hstack((
                np.random.permutation(horz_inds),
                np.random.permutation(vert_inds)))
            inds = np.reshape(inds, (-1, 2))
            row_perm = np.random.permutation(np.arange(inds.shape[0]))
            inds = np.reshape(inds[row_perm, :], (-1,))
            self._perm = inds
        else:
            self._perm = np.random.permutation(np.arange(len(self._roidb)))
        self._cur = 0
generate.py 文件源码 项目:faster-rcnn-resnet 作者: Eniac-Xie 项目源码 文件源码 阅读 67 收藏 0 点赞 0 评论 0
def imdb_proposals(net, imdb):
    """Generate RPN proposals on all images in an imdb."""

    _t = Timer()
    imdb_boxes = [[] for _ in xrange(imdb.num_images)]
    for i in xrange(imdb.num_images):
        im = cv2.imread(imdb.image_path_at(i))
        _t.tic()
        imdb_boxes[i], scores = im_proposals(net, im)
        _t.toc()
        print 'im_proposals: {:d}/{:d} {:.3f}s' \
              .format(i + 1, imdb.num_images, _t.average_time)
        if 0:
            dets = np.hstack((imdb_boxes[i], scores))
            # from IPython import embed; embed()
            _vis_proposals(im, dets[:3, :], thresh=0.9)
            plt.show()

    return imdb_boxes
test_qpOASES_solver_mat_filling.py 文件源码 项目:toppra 作者: hungpham2511 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_matrices_l_h_after_func_fill(self, qpOASES_mat_fixtures):
        """ Verify qpOASES matrices after filling.
        """
        pcs, pp = qpOASES_mat_fixtures

        random_fill([pp.l, pp.h])
        pp._fill_matrices()
        for i in range(pp.N+1):
            assert pp.l[i, 0] == -INFTY
            assert pp.l[i, 1] == 0
            assert pp.h[i, 0] == INFTY
            assert pp.h[i, 1] == INFTY

            l_expected = np.hstack(map(lambda pc: pc.l[i], pcs))
            h_expected = np.hstack(map(lambda pc: pc.h[i], pcs))
            assert np.allclose(pp.l[i, 2:], l_expected)
            assert np.allclose(pp.h[i, 2:], h_expected)
test_interpolate_constraints.py 文件源码 项目:toppra 作者: hungpham2511 项目源码 文件源码 阅读 48 收藏 0 点赞 0 评论 0
def test_canonical_mat(self, intp_fixture):
        """
        """
        pc, pc_intp = intp_fixture
        # number
        for i in range(pc_intp.N):
            ds = pc_intp.ss[i+1] - pc_intp.ss[i]
            ai_new = np.hstack((
                pc.a[i],
                pc.a[i+1] + 2 * ds * pc.b[i+1]))
            bi_new = np.hstack((pc.b[i], pc.b[i+1]))
            ci_new = np.hstack((pc.c[i], pc.c[i+1]))

            assert np.allclose(ai_new, pc_intp.a[i])
            assert np.allclose(bi_new, pc_intp.b[i])
            assert np.allclose(ci_new, pc_intp.c[i])
test_interpolate_constraints.py 文件源码 项目:toppra 作者: hungpham2511 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_equality_mat(self, intp_fixture):
        """ Equality constraint: abar, bbar, cbar, D
        """
        pc, pc_intp = intp_fixture
        # number
        for i in range(pc_intp.N):
            ds = pc_intp.ss[i+1] - pc_intp.ss[i]
            ai_new = np.hstack((
                pc.abar[i],
                pc.abar[i+1] + 2 * ds * pc.bbar[i+1]))
            bi_new = np.hstack((pc.bbar[i], pc.bbar[i+1]))
            ci_new = np.hstack((pc.cbar[i], pc.cbar[i+1]))
            Di_new = block_diag(pc.D[i], pc.D[i+1])

            li_new = np.hstack((pc.l[i], pc.l[i+1]))
            hi_new = np.hstack((pc.h[i], pc.h[i+1]))

            assert np.allclose(ai_new, pc_intp.abar[i])
            assert np.allclose(bi_new, pc_intp.bbar[i])
            assert np.allclose(ci_new, pc_intp.cbar[i])
            assert np.allclose(Di_new, pc_intp.D[i], atol=1e-8)

            assert np.allclose(li_new, pc_intp.l[i])
            assert np.allclose(hi_new, pc_intp.h[i])
TensorFlowInterface.py 文件源码 项目:IntroToDeepLearning 作者: robb-brown 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def plotFields(layer,fieldShape=None,channel=None,figOffset=1,cmap=None,padding=0.01):
    # Receptive Fields Summary
    try:
        W = layer.W
    except:
        W = layer
    wp = W.eval().transpose();
    if len(np.shape(wp)) < 4:       # Fully connected layer, has no shape
        fields = np.reshape(wp,list(wp.shape[0:-1])+fieldShape) 
    else:           # Convolutional layer already has shape
        features, channels, iy, ix = np.shape(wp)
        if channel is not None:
            fields = wp[:,channel,:,:]
        else:
            fields = np.reshape(wp,[features*channels,iy,ix])

    perRow = int(math.floor(math.sqrt(fields.shape[0])))
    perColumn = int(math.ceil(fields.shape[0]/float(perRow)))

    fig = mpl.figure(figOffset); mpl.clf()

    # Using image grid
    from mpl_toolkits.axes_grid1 import ImageGrid
    grid = ImageGrid(fig,111,nrows_ncols=(perRow,perColumn),axes_pad=padding,cbar_mode='single')
    for i in range(0,np.shape(fields)[0]):
        im = grid[i].imshow(fields[i],cmap=cmap); 

    grid.cbar_axes[0].colorbar(im)
    mpl.title('%s Receptive Fields' % layer.name)

    # old way
    # fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))])
    # tiled = []
    # for i in range(0,perColumn*perRow,perColumn):
    #   tiled.append(np.hstack(fields2[i:i+perColumn]))
    # 
    # tiled = np.vstack(tiled)
    # mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Receptive Fields' % layer.name); mpl.colorbar();
    mpl.figure(figOffset+1); mpl.clf(); mpl.imshow(np.sum(np.abs(fields),0),cmap=cmap); mpl.title('%s Total Absolute Input Dependency' % layer.name); mpl.colorbar()
TensorFlowInterface.py 文件源码 项目:IntroToDeepLearning 作者: robb-brown 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def plotOutput(layer,feed_dict,fieldShape=None,channel=None,figOffset=1,cmap=None):
    # Output summary
    try:
        W = layer.output
    except:
        W = layer
    wp = W.eval(feed_dict=feed_dict);
    if len(np.shape(wp)) < 4:       # Fully connected layer, has no shape
        temp = np.zeros(np.product(fieldShape)); temp[0:np.shape(wp.ravel())[0]] = wp.ravel()
        fields = np.reshape(temp,[1]+fieldShape)
    else:           # Convolutional layer already has shape
        wp = np.rollaxis(wp,3,0)
        features, channels, iy,ix = np.shape(wp)
        if channel is not None:
            fields = wp[:,channel,:,:]
        else:
            fields = np.reshape(wp,[features*channels,iy,ix])

    perRow = int(math.floor(math.sqrt(fields.shape[0])))
    perColumn = int(math.ceil(fields.shape[0]/float(perRow)))
    fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))])
    tiled = []
    for i in range(0,perColumn*perRow,perColumn):
        tiled.append(np.hstack(fields2[i:i+perColumn]))

    tiled = np.vstack(tiled)
    if figOffset is not None:
        mpl.figure(figOffset); mpl.clf(); 

    mpl.imshow(tiled,cmap=cmap); mpl.title('%s Output' % layer.name); mpl.colorbar();
TensorFlowInterface.py 文件源码 项目:IntroToDeepLearning 作者: robb-brown 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def plotFields(layer,fieldShape=None,channel=None,maxFields=25,figName='ReceptiveFields',cmap=None,padding=0.01):
    # Receptive Fields Summary
    W = layer.W
    wp = W.eval().transpose();
    if len(np.shape(wp)) < 4:       # Fully connected layer, has no shape
        fields = np.reshape(wp,list(wp.shape[0:-1])+fieldShape)
    else:           # Convolutional layer already has shape
        features, channels, iy, ix = np.shape(wp)
        if channel is not None:
            fields = wp[:,channel,:,:]
        else:
            fields = np.reshape(wp,[features*channels,iy,ix])

    fieldsN = min(fields.shape[0],maxFields)
    perRow = int(math.floor(math.sqrt(fieldsN)))
    perColumn = int(math.ceil(fieldsN/float(perRow)))

    fig = mpl.figure(figName); mpl.clf()

    # Using image grid
    from mpl_toolkits.axes_grid1 import ImageGrid
    grid = ImageGrid(fig,111,nrows_ncols=(perRow,perColumn),axes_pad=padding,cbar_mode='single')
    for i in range(0,fieldsN):
        im = grid[i].imshow(fields[i],cmap=cmap);

    grid.cbar_axes[0].colorbar(im)
    mpl.title('%s Receptive Fields' % layer.name)

    # old way
    # fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))])
    # tiled = []
    # for i in range(0,perColumn*perRow,perColumn):
    #   tiled.append(np.hstack(fields2[i:i+perColumn]))
    #
    # tiled = np.vstack(tiled)
    # mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Receptive Fields' % layer.name); mpl.colorbar();
    mpl.figure(figName+' Total'); mpl.clf(); mpl.imshow(np.sum(np.abs(fields),0),cmap=cmap); mpl.title('%s Total Absolute Input Dependency' % layer.name); mpl.colorbar()


问题


面经


文章

微信
公众号

扫码关注公众号