python类empty()的实例源码

get_line.py 文件源码 项目:MultiObjectTracker 作者: alokwhitewolf 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def run(im):
    im_disp = im.copy()
    window_name = "Draw line here."
    cv2.namedWindow(window_name,cv2.WINDOW_AUTOSIZE)
    cv2.moveWindow(window_name, 910, 0)

    print " Drag across the screen to set lines.\n Do it twice"
    print " After drawing the lines press 'r' to resume\n"

    l1 = np.empty((2, 2), np.uint32)
    l2 = np.empty((2, 2), np.uint32)

    list = [l1,l2]

    mouse_down = False
    def callback(event, x, y, flags, param):
        global trigger, mouse_down

        if trigger<2:
            if event == cv2.EVENT_LBUTTONDOWN:
                mouse_down = True
                list[trigger][0] = (x, y)

            if event == cv2.EVENT_LBUTTONUP and mouse_down:
                mouse_down = False
                list[trigger][1] = (x,y)
                cv2.line(im_disp, (list[trigger][0][0], list[trigger][0][1]),
                         (list[trigger][1][0], list[trigger][1][1]), (255, 0, 0), 2)
                trigger += 1
        else:
            pass
    cv2.setMouseCallback(window_name, callback)
    while True:
        cv2.imshow(window_name,im_disp)
        key = cv2.waitKey(10) & 0xFF

        if key == ord('r'):
            # Press key `q` to quit the program
            return list
            exit()
dispycos_client6.py 文件源码 项目:pycos 作者: pgiri 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def rtask_avg_proc(threshold, trend_task, window_size, task=None):
    import numpy as np
    data = np.empty(window_size, dtype=float)
    data.fill(0.0)
    cumsum = 0.0
    while True:
        i, n = yield task.receive()
        if n is None:
            break
        cumsum += (n - data[0])
        avg = cumsum / window_size
        if avg > threshold:
            trend_task.send((i, 'high', float(avg)))
        elif avg < -threshold:
            trend_task.send((i, 'low', float(avg)))
        data = np.roll(data, -1)
        data[-1] = n
    raise StopIteration(0)


# This generator function is sent to remote dispycos process to save the
# received data in a file (on the remote peer).
dispycos_client6.py 文件源码 项目:pycos 作者: pgiri 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def rtask_avg_proc(threshold, trend_task, window_size, task=None):
    import numpy as np
    data = np.empty(window_size, dtype=float)
    data.fill(0.0)
    cumsum = 0.0
    while True:
        i, n = yield task.receive()
        if n is None:
            break
        cumsum += (n - data[0])
        avg = cumsum / window_size
        if avg > threshold:
            trend_task.send((i, 'high', float(avg)))
        elif avg < -threshold:
            trend_task.send((i, 'low', float(avg)))
        data = np.roll(data, -1)
        data[-1] = n
    raise StopIteration(0)


# This generator function is sent to remote dispycos process to save the
# received data in a file (on the remote peer).
dispycos_client6.py 文件源码 项目:pycos 作者: pgiri 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def rtask_avg_proc(threshold, trend_task, window_size, task=None):
    import numpy as np
    data = np.empty(window_size, dtype=float)
    data.fill(0.0)
    cumsum = 0.0
    while True:
        i, n = yield task.receive()
        if n is None:
            break
        cumsum += (n - data[0])
        avg = cumsum / window_size
        if avg > threshold:
            trend_task.send((i, 'high', float(avg)))
        elif avg < -threshold:
            trend_task.send((i, 'low', float(avg)))
        data = np.roll(data, -1)
        data[-1] = n
    raise StopIteration(0)


# This generator function is sent to remote dispycos process to save the
# received data in a file (on the remote peer).
training.py 文件源码 项目:treecat 作者: posterior 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def __init__(self, N, V, tree_prior, config):
        """Initialize a model with an empty subsample.

        Args:
            N (int): Number of rows in the dataset.
            V (int): Number of columns (features) in the dataset.
            tree_prior: A [K]-shaped numpy array of prior edge log odds, where
                K is the number of edges in the complete graph on V vertices.
            config: A global config dict.
        """
        assert isinstance(N, int)
        assert isinstance(V, int)
        assert isinstance(tree_prior, np.ndarray)
        assert isinstance(config, dict)
        K = V * (V - 1) // 2  # Number of edges in complete graph.
        assert V <= 32768, 'Invalid # features > 32768: {}'.format(V)
        assert tree_prior.shape == (K, )
        assert tree_prior.dtype == np.float32
        self._config = config.copy()
        self._num_rows = N
        self._tree_prior = tree_prior
        self._tree = TreeStructure(V)
        assert self._tree.num_vertices == V
        self._program = make_propagation_program(self._tree.tree_grid)
        self._added_rows = set()
training.py 文件源码 项目:treecat 作者: posterior 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def __init__(self, data, tree_prior, config):
        """Initialize a model with an empty subsample.

        Args:
            data: An [N, V]-shaped numpy array of real-valued data.
            tree_prior: A [K]-shaped numpy array of prior edge log odds, where
                K is the number of edges in the complete graph on V vertices.
            config: A global config dict.
        """
        assert isinstance(data, np.ndarray)
        data = np.asarray(data, np.float32)
        assert len(data.shape) == 2
        N, V = data.shape
        D = config['model_latent_dim']
        E = V - 1  # Number of edges in the tree.
        TreeTrainer.__init__(self, N, V, tree_prior, config)
        self._data = data
        self._latent = np.zeros([N, V, D], np.float32)

        # This is symmetric positive definite.
        self._vert_ss = np.zeros([V, D, D], np.float32)
        # This is arbitrary (not necessarily symmetric).
        self._edge_ss = np.zeros([E, D, D], np.float32)
        # This represents (count, mean, covariance).
        self._feat_ss = np.zeros([V, D, 1 + 1 + D], np.float32)
serving.py 文件源码 项目:treecat 作者: posterior 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def observed_perplexity(self, counts):
        """Compute perplexity = exp(entropy) of observed variables.

        Perplexity is an information theoretic measure of the number of
        clusters or latent classes. Perplexity is a real number in the range
        [1, M], where M is model_num_clusters.

        Args:
            counts: A [V]-shaped array of multinomial counts.

        Returns:
            A [V]-shaped numpy array of perplexity.
        """
        V, E, M, R = self._VEMR
        if counts is not None:
            counts = np.ones(V, dtype=np.int8)
        assert counts.shape == (V, )
        assert counts.dtype == np.int8
        assert np.all(counts > 0)
        observed_entropy = np.empty(V, dtype=np.float32)
        for v in range(V):
            beg, end = self._ragged_index[v:v + 2]
            probs = np.dot(self._feat_cond[beg:end, :], self._vert_probs[v, :])
            observed_entropy[v] = multinomial_entropy(probs, counts[v])
        return np.exp(observed_entropy)
01_adding_task.py 文件源码 项目:skiprnn-2017-telecombcn 作者: imatge-upc 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def generate_batch(seq_length, batch_size, min_val, max_val):
    """
    Generates batch of examples.

    :param seq_length: length of the sequence to be generated
    :param batch_size: number of samples in the batch
    :param min_val: minimum value for a
    :param max_val: maximum value for a

    :return x: batch of examples
    :return y: batch of ground truth values
    """
    n_elems = 2
    x = np.empty((batch_size, seq_length, n_elems))
    y = np.empty((batch_size, 1))

    for i in range(batch_size):
        sample, ground_truth = generate_example(seq_length, min_val, max_val)
        x[i, :, :] = sample
        y[i, 0] = ground_truth
    return x, y
history_container.py 文件源码 项目:zipline-chinese 作者: zhanghan1990 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def frame_from_bardata(self, data, algo_dt):
        """
        Create a DataFrame from the given BarData and algo dt.
        """
        data = data._data
        frame_data = np.empty((len(self.fields), len(self.sids))) * np.nan

        for j, sid in enumerate(self.sids):
            sid_data = data.get(sid)
            if not sid_data:
                continue
            if algo_dt != sid_data['dt']:
                continue
            for i, field in enumerate(self.fields):
                frame_data[i, j] = sid_data.get(field, np.nan)

        return pd.DataFrame(
            frame_data,
            index=self.fields.copy(),
            columns=self.sids.copy(),
        )
minute_bars.py 文件源码 项目:zipline-chinese 作者: zhanghan1990 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def last_date_in_output_for_sid(self, sid):
        """
        Parameters:
        -----------
        sid : int
            Asset identifier.

        Returns:
        --------
        out : pd.Timestamp
            The midnight of the last date written in to the output for the
            given sid.
        """
        sizes_path = "{0}/close/meta/sizes".format(self.sidpath(sid))
        if not os.path.exists(sizes_path):
            return pd.NaT
        with open(sizes_path, mode='r') as f:
            sizes = f.read()
        data = json.loads(sizes)
        num_days = data['shape'][0] / self._minutes_per_day
        if num_days == 0:
            # empty container
            return pd.NaT
        return self._trading_days[num_days - 1]
linear.py 文件源码 项目:static-define-by-run 作者: bkvogel 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def forward(self, inputs):
        # todo: This is only compatible with Numpy. Not yet compatible with cupy.
        x = inputs[0]
        W = inputs[1]
        # Notes:
        # In order to be compatible with the "static graph" feature, it is
        # required that all output arrays of this forward
        # function be allocated explicitly:
        y = np.empty((x.shape[0], W.shape[0])).astype(x.dtype)
        # This is required because all of the "static_*()" functions
        # use the convention that any output arrays are supplied
        # as input arguments to the function. That is because it is
        # not allowed for a "static_*()" function to return anything
        # other than `None`. The reason is to prevent dynamic allocation
        # of output arrays during execution of the static schedule
        # because it would break the model.
        if len(inputs) == 3:
            bias = inputs[2]
            # Note: `y` is the output array.
            self.static_linear(x, W, bias, y)
        else:
            # Note: `y` is the output array.
            self.static_linear_no_bias(x, W, y)
        return y,
model.py 文件源码 项目:j3dview 作者: blank63 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def gl_init(self):
        self.gl_vertex_shader_factory = functools.lru_cache(maxsize=None)(functools.partial(gl.Shader,GL_VERTEX_SHADER))
        self.gl_fragment_shader_factory = functools.lru_cache(maxsize=None)(functools.partial(gl.Shader,GL_FRAGMENT_SHADER))
        self.gl_program_factory = functools.lru_cache(maxsize=None)(GLProgram)
        self.gl_texture_factory = functools.lru_cache(maxsize=None)(gx.texture.GLTexture)

        array_table = {gx.VA_PTNMTXIDX:GLMatrixIndexArray()}
        array_table.update((attribute,array.gl_convert()) for attribute,array in self.array_table.items())

        for shape in self.shapes:
            shape.gl_init(array_table)

        for material in self.materials:
            material.gl_init()

        for texture in self.textures:
            texture.gl_init(self.gl_texture_factory)

        self.gl_joints = [copy.copy(joint) for joint in self.joints]
        self.gl_joint_matrices = numpy.empty((len(self.joints),3,4),numpy.float32)
        self.gl_matrix_table = gl.TextureBuffer(GL_DYNAMIC_DRAW,GL_RGBA32F,(len(self.matrix_descriptors),3,4),numpy.float32)
        self.gl_update_matrix_table()

        self.gl_draw_objects = list(self.gl_generate_draw_objects(self.scene_graph))
        self.gl_draw_objects.sort(key=lambda draw_object: draw_object.material.unknown0)
shp1.py 文件源码 项目:j3dview 作者: blank63 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def gl_init(self,array_table):
        self.gl_hide = False

        self.gl_vertex_array = gl.VertexArray()
        glBindVertexArray(self.gl_vertex_array)

        self.gl_vertex_buffer = gl.Buffer()
        glBindBuffer(GL_ARRAY_BUFFER,self.gl_vertex_buffer)

        self.gl_element_count = 3*gl_count_triangles(self)
        self.gl_element_buffer = gl.Buffer()
        glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,self.gl_element_buffer)

        vertex_type =  numpy.dtype([array_table[attribute].field() for attribute in self.attributes])
        vertex_count = sum(len(primitive.vertices) for primitive in self.primitives)
        vertex_array = numpy.empty(vertex_count,vertex_type)

        for attribute in self.attributes:
            array_table[attribute].load(self,vertex_array)

        vertex_array,element_map = numpy.unique(vertex_array,return_inverse=True)
        element_array = gl_create_element_array(self,element_map,self.gl_element_count)

        glBufferData(GL_ARRAY_BUFFER,vertex_array.nbytes,vertex_array,GL_STATIC_DRAW)
        glBufferData(GL_ELEMENT_ARRAY_BUFFER,element_array.nbytes,element_array,GL_STATIC_DRAW)
plyfile.py 文件源码 项目:pointnet 作者: charlesq34 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def make2d(array, cols=None, dtype=None):
    '''
    Make a 2D array from an array of arrays.  The `cols' and `dtype'
    arguments can be omitted if the array is not empty.

    '''
    if (cols is None or dtype is None) and not len(array):
        raise RuntimeError("cols and dtype must be specified for empty "
                           "array")

    if cols is None:
        cols = len(array[0])

    if dtype is None:
        dtype = array[0].dtype

    return _np.fromiter(array, [('_', dtype, (cols,))],
                        count=len(array))['_']
plyfile.py 文件源码 项目:pointnet 作者: charlesq34 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def _read_bin(self, stream, byte_order):
        '''
        Load a PLY element from a binary PLY file.  The element may
        contain list properties.

        '''
        self._data = _np.empty(self.count, dtype=self.dtype(byte_order))

        for k in _range(self.count):
            for prop in self.properties:
                try:
                    self._data[prop.name][k] = \
                        prop._read_bin(stream, byte_order)
                except StopIteration:
                    raise PlyParseError("early end-of-file",
                                        self, k, prop)
Analysis.py 文件源码 项目:BioNanoAnalyst 作者: AppliedBioinformatics 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def parse_fasta(self):
        self.ref_id=dict()
        self.ref_inf=dict()
        i=1
        N = 0
        ref_inf=np.empty(shape=[0,3])
        for seqs in SeqIO.parse(self.ref,'fasta'):
            seq_id = seqs.id
            self.ref_id[i] = seq_id
            seq = str(seqs.seq.upper())
            seq_len = len(seq)
            self.ref_inf[seq_id]=seq_len
            N+=seq.count('N')
            ref_inf = np.append(ref_inf,[[i,seq_id,seq_len]],axis=0)
            i+=1
        self.ref_detail = pd.DataFrame(ref_inf,columns=['Index','Contig','Length(bp)'])
        self.N = N
Analysis.py 文件源码 项目:BioNanoAnalyst 作者: AppliedBioinformatics 项目源码 文件源码 阅读 50 收藏 0 点赞 0 评论 0
def qualification_filter(self):
        """
        Providing information of those unqualified and qualified contigs from the orginal fasta file
        with the criterion: >20Kb & >=5 restriction sites inside.
        """
        unqualified = np.empty(shape=[0,3])
        qualified = np.empty(shape=[0,4])
        rm_dup = self.RcmapTable[['CMapId','ContigLength','NumSites']].drop_duplicates()
        for i in self.ref_id.keys():
            index = i
            name = self.ref_id[i]
            length = self.ref_inf[name]
            if i not in self.RcmapTable['CMapId'].unique():
                unqualified = np.append(unqualified,[[index,name, length]],axis=0)
            else:
                Id = rm_dup[rm_dup['CMapId']==i].index[0]
                sites = rm_dup['NumSites'][Id]
                qualified = np.append(qualified,[[index,name,length,sites]],axis=0)
        self.unqualified = pd.DataFrame(unqualified, columns=['index','contig','length(bp)'])
        self.qualified = pd.DataFrame(qualified, columns=['index','contig','length(bp)','numSites'])
data_reader.py 文件源码 项目:encore.ai 作者: dyelax 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def get_train_batch(self, batch_size, seq_len):
        """
        Gets a batch of sequences for training.

        @param batch_size: The number of sequences in the batch.
        @param seq_len: The number of words in a sequence.

        @return: A tuple of arrays of shape [batch_size, seq_len].
        """
        inputs = np.empty([batch_size, seq_len], dtype=int)
        targets = np.empty([batch_size, seq_len], dtype=int)

        for i in xrange(batch_size):
            inp, target = self.get_seq(seq_len)
            inputs[i] = inp
            targets[i] = target

        return inputs, targets
model.py 文件源码 项目:aapm_thoracic_challenge 作者: xf4j 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test(self, input_path, output_path):
        if not self.load()[0]:
            raise Exception("No model is found, please train first")

        mean, std = self.sess.run([self.mean, self.std])

        images = np.empty((1, self.im_size[0], self.im_size[1], self.im_size[2], 1), dtype=np.float32)
        #labels = np.empty((1, self.im_size[0], self.im_size[1], self.im_size[2], self.nclass), dtype=np.float32)
        for f in input_path:
            images[0, ..., 0], read_info = read_testing_inputs(f, self.roi[0], self.im_size, output_path)
            probs = self.sess.run(self.probs, feed_dict = { self.images: (images - mean) / std,
                                                            self.is_training: True,
                                                            self.keep_prob: 1 })
            #print(self.roi[1] + os.path.basename(f) + ":" + str(dice))
            output_file = os.path.join(output_path, self.roi[1] + '_' + os.path.basename(f))
            f_h5 = h5py.File(output_file, 'w')
            if self.roi[0] < 0:
                f_h5['predictions'] = restore_labels(np.argmax(probs[0], 3), self.roi[0], read_info)
            else:
                f_h5['probs'] = restore_labels(probs[0, ..., 1], self.roi[0], read_info)
            f_h5.close()
evolution_strategy.py 文件源码 项目:pycma 作者: CMA-ES 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def save_to(self, nameprefix, switch=False):
        """saves logger data to a different set of files, for
        ``switch=True`` also the loggers name prefix is switched to
        the new value

        """
        if not nameprefix or not utils.is_str(nameprefix):
            raise ValueError('filename prefix must be a non-empty string')

        if nameprefix == self.default_prefix:
            raise ValueError('cannot save to default name "' + nameprefix + '...", chose another name')

        if nameprefix == self.name_prefix:
            return

        for name in self.file_names:
            open(nameprefix + name + '.dat', 'w').write(open(self.name_prefix + name + '.dat').read())

        if switch:
            self.name_prefix = nameprefix
unet.py 文件源码 项目:lung-cancer-detector 作者: YichenGong 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def predict(self, model_path, x_test):
        """
        Uses the model to create a prediction for the given data

        :param model_path: path to the model checkpoint to restore
        :param x_test: Data to predict on. Shape [n, nx, ny, channels]
        :returns prediction: The unet prediction Shape [n, px, py, labels] (px=nx-self.offset/2) 
        """

        init = tf.global_variables_initializer()
        with tf.Session() as sess:
            # Initialize variables
            sess.run(init)

            # Restore model weights from previously saved model
            self.restore(sess, model_path)

            y_dummy = np.empty((x_test.shape[0], x_test.shape[1], x_test.shape[2], self.n_class))
            prediction = sess.run(self.predicter, feed_dict={self.x: x_test, self.y: y_dummy, self.keep_prob: 1.})

        return prediction
stat_utils.py 文件源码 项目:saapy 作者: ashapochka 项目源码 文件源码 阅读 60 收藏 0 点赞 0 评论 0
def draw_bs_pairs_linreg(x, y, size=1):
    """Perform pairs bootstrap for linear regression."""

    # Set up array of indices to sample from: inds
    inds = np.arange(len(x))

    # Initialize replicates: bs_slope_reps, bs_intercept_reps
    bs_slope_reps = np.empty(size)
    bs_intercept_reps = np.empty(size)

    # Generate replicates
    for i in range(size):
        bs_inds = np.random.choice(inds, size=len(inds))
        bs_x, bs_y = x[bs_inds], y[bs_inds]
        # noinspection PyTupleAssignmentBalance
        bs_slope_reps[i], bs_intercept_reps[i] = np.polyfit(bs_x, bs_y, 1)

    return bs_slope_reps, bs_intercept_reps
stat_utils.py 文件源码 项目:saapy 作者: ashapochka 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def draw_bs_pairs(x, y, func, size=1):
    """Perform pairs bootstrap for single statistic."""

    # Set up array of indices to sample from
    inds = np.arange(len(x))

    # Initialize replicates
    bs_replicates = np.empty(size)

    # Generate replicates
    for i in range(size):
        bs_inds = np.random.choice(inds, len(inds))
        bs_x, bs_y = x[bs_inds], y[bs_inds]
        bs_replicates[i] = func(bs_x, bs_y)

    return bs_replicates
mapped_struct.py 文件源码 项目:sharedbuffers 作者: jampp 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def testMerge(self, dtype=dtype):
            testarray1 = range(1,101)
            testarray2 = range(5,106)
            a = numpy.empty((100,2), dtype=dtype)
            b = numpy.empty((100,2), dtype=dtype)
            merged = numpy.empty((200,2), dtype=dtype)
            incompatible1 = numpy.empty((200,3), dtype=dtype)
            incompatible2 = numpy.empty(200, dtype=dtype)
            a[:,0] = numpy.arange(1,101)
            a[:,1] = numpy.arange(2,102)
            b[:,0] = numpy.arange(5,105)
            b[:,1] = numpy.arange(6,106)
            ref = numpy.concatenate([a,b])
            ref = ref[numpy.argsort(ref[:,0])]
            self.assertEqual(mapped_struct.index_merge(a, b, merged), 200)
            self.assertTrue((merged == ref).all())
            self.assertRaises(ValueError, mapped_struct.index_merge, a, b, incompatible1)
            self.assertRaises(ValueError, mapped_struct.index_merge, a, incompatible1, merged)
            self.assertRaises(ValueError, mapped_struct.index_merge, a, b, incompatible2)
            self.assertRaises(ValueError, mapped_struct.index_merge, a, incompatible2, merged)
pos-tagging-explore.py 文件源码 项目:Deep-Learning-with-Keras 作者: PacktPublishing 项目源码 文件源码 阅读 48 收藏 0 点赞 0 评论 0
def build_tensor(filename, numrecs, word2index, maxlen, 
                 make_categorical=False):
    data = np.empty((numrecs, ), dtype=list)
    fin = open(filename, "rb")
    i = 0
    for line in fin:
        wids = []
        for word in line.strip().split():
            if word2index.has_key(word):
                wids.append(word2index[word])
            else:
                wids.append(word2index["UNK"])
        if make_categorical:
            data[i] = np_utils.to_categorical(
                wids, num_classes=len(word2index))
        else:
            data[i] = wids
        i += 1
    fin.close()
    pdata = sequence.pad_sequences(data, maxlen=maxlen)
    return pdata
PlotCurveItem.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def generatePath(self, x, y):
        if self.opts['stepMode']:
            ## each value in the x/y arrays generates 2 points.
            x2 = np.empty((len(x),2), dtype=x.dtype)
            x2[:] = x[:,np.newaxis]
            if self.opts['fillLevel'] is None:
                x = x2.reshape(x2.size)[1:-1]
                y2 = np.empty((len(y),2), dtype=y.dtype)
                y2[:] = y[:,np.newaxis]
                y = y2.reshape(y2.size)
            else:
                ## If we have a fill level, add two extra points at either end
                x = x2.reshape(x2.size)
                y2 = np.empty((len(y)+2,2), dtype=y.dtype)
                y2[1:-1] = y[:,np.newaxis]
                y = y2.reshape(y2.size)[1:-1]
                y[0] = self.opts['fillLevel']
                y[-1] = self.opts['fillLevel']

        path = fn.arrayToQPath(x, y, connect=self.opts['connect'])

        return path
PlotDataItem.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def dataType(obj):
    if hasattr(obj, '__len__') and len(obj) == 0:
        return 'empty'
    if isinstance(obj, dict):
        return 'dictOfLists'
    elif isSequence(obj):
        first = obj[0]

        if (hasattr(obj, 'implements') and obj.implements('MetaArray')):
            return 'MetaArray'
        elif isinstance(obj, np.ndarray):
            if obj.ndim == 1:
                if obj.dtype.names is None:
                    return 'listOfValues'
                else:
                    return 'recarray'
            elif obj.ndim == 2 and obj.dtype.names is None and obj.shape[1] == 2:
                return 'Nx2array'
            else:
                raise Exception('array shape must be (N,) or (N,2); got %s instead' % str(obj.shape))
        elif isinstance(first, dict):
            return 'listOfDicts'
        else:
            return 'listOfValues'
GradientEditorItem.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def getLookupTable(self, nPts, alpha=None):
        """
        Return an RGB(A) lookup table (ndarray). 

        ==============  ============================================================================
        **Arguments:**
        nPts            The number of points in the returned lookup table.
        alpha           True, False, or None - Specifies whether or not alpha values are included
                        in the table.If alpha is None, alpha will be automatically determined.
        ==============  ============================================================================
        """
        if alpha is None:
            alpha = self.usesAlpha()
        if alpha:
            table = np.empty((nPts,4), dtype=np.ubyte)
        else:
            table = np.empty((nPts,3), dtype=np.ubyte)

        for i in range(nPts):
            x = float(i)/(nPts-1)
            color = self.getColor(x, toQColor=False)
            table[i] = color[:table.shape[1]]

        return table
ROI.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def renderShapeMask(self, width, height):
        """Return an array of 0.0-1.0 into which the shape of the item has been drawn.

        This can be used to mask array selections.
        """
        if width == 0 or height == 0:
            return np.empty((width, height), dtype=float)

        # QImage(width, height, format)
        im = QtGui.QImage(width, height, QtGui.QImage.Format_ARGB32)
        im.fill(0x0)
        p = QtGui.QPainter(im)
        p.setPen(fn.mkPen(None))
        p.setBrush(fn.mkBrush('w'))
        shape = self.shape()
        bounds = shape.boundingRect()
        p.scale(im.width() / bounds.width(), im.height() / bounds.height())
        p.translate(-bounds.topLeft())
        p.drawPath(shape)
        p.end()
        mask = fn.imageToArray(im, transpose=True)[:,:,0].astype(float) / 255.
        return mask
MeshData.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def faceNormals(self, indexed=None):
        """
        Return an array (Nf, 3) of normal vectors for each face.
        If indexed='faces', then instead return an indexed array
        (Nf, 3, 3)  (this is just the same array with each vector
        copied three times).
        """
        if self._faceNormals is None:
            v = self.vertexes(indexed='faces')
            self._faceNormals = np.cross(v[:,1]-v[:,0], v[:,2]-v[:,0])

        if indexed is None:
            return self._faceNormals
        elif indexed == 'faces':
            if self._faceNormalsIndexedByFaces is None:
                norms = np.empty((self._faceNormals.shape[0], 3, 3))
                norms[:] = self._faceNormals[:,np.newaxis,:]
                self._faceNormalsIndexedByFaces = norms
            return self._faceNormalsIndexedByFaces
        else:
            raise Exception("Invalid indexing mode. Accepts: None, 'faces'")


问题


面经


文章

微信
公众号

扫码关注公众号