python类abs()的实例源码

libscores.py 文件源码 项目:AutoML5 作者: djajetic 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def a_score_(solution, prediction):
    mad = float(mvmean(abs(solution-mvmean(solution)))) 
    return 1 - metrics.mean_absolute_error(solution, prediction)/mad
utils.py 文件源码 项目:DeepAnomaly 作者: adiyoss 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def build_data_auto_encoder(data, step, win_size):
    count = data.shape[1] / float(step)
    docX = np.zeros((count, 3, win_size))

    for i in range(0, data.shape[1] - win_size, step):
        c = i / step
        docX[c][0] = np.abs(data[0, i:i + win_size] - data[1, i:i + win_size])
        docX[c][1] = np.power(data[0, i:i + win_size] - data[1, i:i + win_size], 2)
        docX[c][2] = np.pad(
            (data[0, i:i + win_size - 1] - data[0, i + 1:i + win_size]) * (data[1, i:i + win_size - 1] - data[1, i + 1:i + win_size]),
            (0, 1), 'constant', constant_values=0)
    data = np.dstack((docX[:, 0], docX[:, 1], docX[:, 2])).reshape(docX.shape[0], docX.shape[1]*docX.shape[2])

    return data
signal_monitor.py 文件源码 项目:piksi_ros 作者: uscresl 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def reject_outliers(data, m = 2.):
    d = np.abs(data - np.median(data))
    mdev = np.median(d)
    s = d/mdev if mdev else 0.
    return data[s<m]
fields.py 文件源码 项目:pyfds 作者: emtpb 项目源码 文件源码 阅读 51 收藏 0 点赞 0 评论 0
def get_line_region(self, position, name=''):
        """Creates a line region at the given position (start_x, start_y, end_x, end_y),
        inclusive.

        Args:
            position: Position of the line region (start_x, start_y, end_x, end_y).
            name: Name of the region.

        Returns:
            Line region.
        """

        start_idx = self.get_index(position[:2])
        end_idx = self.get_index(position[2:])

        x_diff = start_idx % self.x.samples - end_idx % self.x.samples
        y_diff = int(start_idx / self.x.samples) - int(end_idx / self.x.samples)

        num_points = max(np.abs([x_diff, y_diff]))
        point_indices = []

        for ii in range(num_points + 1):

            x_position = start_idx % self.x.samples - np.round(ii / num_points * x_diff)
            y_position = int(start_idx / self.x.samples) - np.round(ii / num_points * y_diff)
            point_indices.append(int(x_position + self.x.samples * y_position))

        return reg.LineRegion(point_indices, position, name=name)
fields.py 文件源码 项目:pyfds 作者: emtpb 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_index(self, value):
        """Returns the index of a given value.

        Args:
            value: Value the index requested for.

        Returns:
            Index.
        """

        index, = np.where(np.abs(self.vector - value) <= self.snap_radius)
        assert len(index) < 2, "Multiple points found within snap radius of given value."
        assert len(index) > 0, "No point found within snap radius of given value."

        return int(index)
images2gif.py 文件源码 项目:RasterFairy 作者: Quasimondo 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def alterneigh(self, alpha, rad, i, b, g, r):
        if i-rad >= self.SPECIALS-1:
            lo = i-rad
            start = 0
        else:
            lo = self.SPECIALS-1
            start = (self.SPECIALS-1 - (i-rad))

        if i+rad <= self.NETSIZE:
            hi = i+rad
            end = rad*2-1
        else:
            hi = self.NETSIZE
            end = (self.NETSIZE - (i+rad))

        a = self.geta(alpha, rad)[start:end]

        p = self.network[lo+1:hi]
        p -= np.transpose(np.transpose(p - np.array([b, g, r])) * a)

    #def contest(self, b, g, r):
    #    """ Search for biased BGR values
    #            Finds closest neuron (min dist) and updates self.freq
    #            finds best neuron (min dist-self.bias) and returns position
    #            for frequently chosen neurons, self.freq[i] is high and self.bias[i] is negative
    #            self.bias[i] = self.GAMMA*((1/self.NETSIZE)-self.freq[i])"""
    #
    #    i, j = self.SPECIALS, self.NETSIZE
    #    dists = abs(self.network[i:j] - np.array([b,g,r])).sum(1)
    #    bestpos = i + np.argmin(dists)
    #    biasdists = dists - self.bias[i:j]
    #    bestbiaspos = i + np.argmin(biasdists)
    #    self.freq[i:j] -= self.BETA * self.freq[i:j]
    #    self.bias[i:j] += self.BETAGAMMA * self.freq[i:j]
    #    self.freq[bestpos] += self.BETA
    #    self.bias[bestpos] -= self.BETAGAMMA
    #    return bestbiaspos
gui.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def calc_scores(self, lag):
        data    = self.raw_data[:, abs(self.raw_lags) <= lag]
        control = self.raw_control
        score  = self.overlap[self.pairs[:, 0], self.pairs[:, 1]]
        score2 = control - data.mean(axis=1)
        score3 = control
        return score, score2, score3
gui.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def data_tooltip(self, x, y):
        row = int(y)
        if row >= 0 and row < len(self.raw_data):
            all_raw_data = self.raw_data
            data_idx     = self.sort_idcs[row]
            lag_diff     = np.abs(x - self.raw_lags)
            nearest_lag_idx = np.argmin(lag_diff)
            nearest_lag = self.raw_lags[nearest_lag_idx]
            value = all_raw_data[data_idx, nearest_lag_idx]
            return ('%.2f - lag: %.2fms (template similarity: %.2f  '
                    'CC metric %.2f)') % (value, nearest_lag,
                                                         self.score_x[data_idx],
                                                         self.score_y[data_idx])
        else:
            return ''
gui.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def update_statusbar(self, event):
        # Update information about the mouse position to the status bar
        status_bar = self.statusbar
        if event.inaxes == self.electrode_ax:
            status_bar.showMessage(u'x: %.0f?m  y: %.0f?m' % (event.xdata, event.ydata))
        elif event.inaxes == self.data_x:
            yspacing = numpy.max(np.abs(self.data))*1.05
            if yspacing != 0:
                row = int((event.ydata + 0.5*yspacing)/yspacing)
            else:
                row = int((event.ydata))
            if row < 0 or row >= len(self.inspect_points):
                status_bar.clearMessage()
            else:
                time_idx = np.argmin(np.abs(self.time - event.xdata))
                start_idx = np.argmin(np.abs(self.time - self.t_start))
                rel_time_idx = time_idx - start_idx
                electrode_idx = self.inspect_points[row]
                electrode_x, electrode_y = self.points[electrode_idx]
                data = self.data[rel_time_idx, electrode_idx]
                msg = '%.2f' % data
                if self.show_fit:
                    fit = self.curve[electrode_idx, rel_time_idx]
                    msg += ' (fit: %.2f)' % fit
                msg += '  t: %.2fs ' % self.time[time_idx]
                msg += u'(electrode %d at x: %.0f?m  y: %.0f?m)' % (electrode_idx, electrode_x, electrode_y)
                status_bar.showMessage(msg)
kernels.py 文件源码 项目:MKLMM 作者: omerwe 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def sameParams(self, params, i=None):
        if (self.prevParams is None): return False
        if (i is None): return (np.max(np.abs(params-self.prevParams)) < self.epsilon)
        return ((np.abs(params[i]-self.prevParams[i])) < self.epsilon)
kernels.py 文件源码 项目:MKLMM 作者: omerwe 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def getEE(self, EEParams):
        if (self.prevEEParams is not None):
            if (EEParams.shape[0] == 0 or np.max(np.abs(EEParams-self.prevEEParams < self.epsilon))): return self.cache['EE']
        Kd = self.Kdim(EEParams)
        EE = elsympol(Kd, len(self.kernels))        
        self.prevEEParams = EEParams.copy()
        self.cache['EE'] = EE
        return EE
kernels.py 文件源码 项目:MKLMM 作者: omerwe 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def getScaledE(self, params, i, E):     
        if (self.prevHyp0Params is not None and np.abs(self.prevHyp0Params[i]-params[i]) < self.epsilon): return self.cache['E_scaled'][i]      
        if ('E_scaled' not in self.cache.keys()): self.cache['E_scaled'] = [None for j in xrange(len(self.kernels))]

        for j in xrange(len(self.kernels)):
            if (self.prevHyp0Params is not None and np.abs(self.prevHyp0Params[j]-params[j]) < self.epsilon): continue      
            E_scaled = E[:,:,j+1]*np.exp(2*params[j])
            self.cache['E_scaled'][j] = E_scaled

        self.prevHyp0Params = params.copy()     
        return self.cache['E_scaled'][i]
kernels.py 文件源码 项目:MKLMM 作者: omerwe 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, X, pos):
        Kernel.__init__(self)
        self.X_scaled = X/np.sqrt(X.shape[1])
        d = pos.shape[0]
        self.D = np.abs(np.tile(np.column_stack(pos).T, (1, d)) - np.tile(pos, (d, 1))) / 100000.0
kernels.py 文件源码 项目:MKLMM 作者: omerwe 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, X, pos):
        Kernel.__init__(self)
        self.X_scaled = X/np.sqrt(X.shape[1])
        d = pos.shape[0]
        self.D = np.abs(np.tile(np.column_stack(pos).T, (1, d)) - np.tile(pos, (d, 1))) / 100000.0
kernels.py 文件源码 项目:MKLMM 作者: omerwe 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def __init__(self, X, pos):
        Kernel.__init__(self)
        self.X_scaled = X/np.sqrt(X.shape[1])
        d = pos.shape[0]
        self.D = np.abs(np.tile(np.column_stack(pos).T, (1, d)) - np.tile(pos, (d, 1))) / 100000.0
randomizedEigensolver.py 文件源码 项目:hippylib 作者: hippylib 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def AorthogonalityCheck(A, U, d):
    """
    Test the frobenious norm of  D^{-1}(U^TAU) - I_k
    """
    V = np.zeros(U.shape)
    AV = np.zeros(U.shape)
    Av = Vector()
    v = Vector()
    A.init_vector(Av,0)
    A.init_vector(v,1)

    nvec  = U.shape[1]
    for i in range(0,nvec):
        v.set_local(U[:,i])
        v *= 1./math.sqrt(d[i])
        A.mult(v,Av)
        AV[:,i] = Av.get_local()
        V[:,i] = v.get_local()

    VtAV = np.dot(V.T, AV)    
    err = VtAV - np.eye(nvec, dtype=VtAV.dtype)

#    plt.imshow(np.abs(err))
#    plt.colorbar()
#    plt.show()

    print("i, ||Vt(i,:)AV(:,i) - I_i||_F, V[:,i] = 1/sqrt(lambda_i) U[:,i]")
    for i in range(1,nvec+1):
        print(i, np.linalg.norm(err[0:i,0:i], 'fro') )
unet_d8g_222f.py 文件源码 项目:kaggle_dsb2017 作者: astoc 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def load_scan(path):
    slices = [dicom.read_file(path + '/' + s) for s in os.listdir(path)]
    #slices.sort(key = lambda x: int(x.InstanceNumber))

    acquisitions = [x.AcquisitionNumber for x in slices]

    vals, counts = np.unique(acquisitions, return_counts=True)
    vals = vals[::-1]  # reverse order so the later acquisitions are first (the np.uniques seems to always return the ordered 1 2 etc.
    counts = counts[::-1]

    ## take the acquistions that has more entries; if these are identical take the later  entrye
    acq_val_sel = vals[np.argmax(counts)]


    ##acquisitions = sorted(np.unique(acquisitions), reverse=True)

    if len(vals) > 1:
        print ("WARNING ##########: MULTIPLE acquisitions & counts, acq_val_sel, path: ", vals, counts, acq_val_sel, path)
    slices2= [x for x in slices if x.AcquisitionNumber == acq_val_sel]

    slices = slices2


    ## ONE path includes 2 acquisitions (2 sets), take the latter acquiisiton only whihch cyupically is better than the first/previous ones.
    ## example of the     '../input/stage1/b8bb02d229361a623a4dc57aa0e5c485'

    #slices.sort(key = lambda x: int(x.ImagePositionPatient[2]))  # from v 8, BUG should be float
    slices.sort(key = lambda x: float(x.ImagePositionPatient[2]))  # from v 9
    try:
        slice_thickness = np.abs(slices[0].ImagePositionPatient[2] - slices[1].ImagePositionPatient[2])
    except:
        slice_thickness = np.abs(slices[0].SliceLocation - slices[1].SliceLocation)

    for s in slices:
        s.SliceThickness = slice_thickness

    return slices
lungs_var3_d8g_222f.py 文件源码 项目:kaggle_dsb2017 作者: astoc 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def load_scan(path):
    slices = [dicom.read_file(path + '/' + s) for s in os.listdir(path)]
    #slices.sort(key = lambda x: int(x.InstanceNumber))
    #slices.sort(key = lambda x: int(x.ImagePositionPatient[2]))  # from v 8 - BUGGY (should be float caused issues with segmenting and rescaling ....
    slices.sort(key = lambda x: float(x.ImagePositionPatient[2]))  # from v 8
    try:
        slice_thickness = np.abs(slices[0].ImagePositionPatient[2] - slices[1].ImagePositionPatient[2])
    except:
        slice_thickness = np.abs(slices[0].SliceLocation - slices[1].SliceLocation)

    for s in slices:
        s.SliceThickness = slice_thickness

    return slices
sgcrf.py 文件源码 项目:sgcrfpy 作者: dswah 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def soft_thresh(r, w):
    return np.sign(w) * np.max(np.abs(w)-r, 0)
sgcrf.py 文件源码 项目:sgcrfpy 作者: dswah 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def active_set_Lam(self, fixed, vary):
        grad = self.grad_wrt_Lam(fixed, vary)
        assert np.allclose(grad, grad.T, 1e-3)
        return np.where((np.abs(np.triu(grad)) > self.lamL) | (self.Lam != 0))
        # return np.where((np.abs(grad) > self.lamL) | (~np.isclose(self.Lam, 0)))


问题


面经


文章

微信
公众号

扫码关注公众号