python类int32()的实例源码

base_klt.py 文件源码 项目:pybot 作者: spillai 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def visualize(self, vis, colored=True): 

        try: 
            tids = set(self.ids)
        except: 
            return vis

        for hid, hbox in izip(self.ids, self.bboxes): 
            cv2.rectangle(vis, (hbox[0], hbox[1]), (hbox[2], hbox[3]), (0,255,0), 1)

        vis = super(BoundingBoxKLT, self).viz(vis, colored=colored)

        # for tid, pts in self.tm_.tracks.iteritems(): 
        #     if tid not in tids: continue
        #     cv2.polylines(vis, [np.vstack(pts.items).astype(np.int32)[-4:]], False, 
        #                   (0,255,0), thickness=1)
        #     tl, br = np.int32(pts.latest_item)-2, np.int32(pts.latest_item)+2
        #     cv2.rectangle(vis, (tl[0], tl[1]), (br[0], br[1]), (0,255,0), -1)

        # OpenCVKLT.draw_tracks(self, vis, colored=colored, max_track_length=10)
        return vis
gui.py 文件源码 项目:spikefuel 作者: duguyue100 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def draw_poly_box(frame, pts, color=[0, 255, 0]):
    """Draw polylines bounding box.

    Parameters
    ----------
    frame : OpenCV Mat
        A given frame with an object
    pts : numpy array
        consists of bounding box information with size (n points, 2)
    color : list
        color of the bounding box, the default is green

    Returns
    -------
    new_frame : OpenCV Mat
        A frame with given bounding box.
    """
    new_frame = frame.copy()
    temp_pts = np.array(pts, np.int32)
    temp_pts = temp_pts.reshape((-1, 1, 2))
    cv2.polylines(new_frame, [temp_pts], True, color, thickness=2)

    return new_frame
text.py 文件源码 项目:AVSR-Deep-Speech 作者: pandeydivesh15 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def sparse_tuple_from(sequences, dtype=np.int32):
    r"""Creates a sparse representention of ``sequences``.
    Args:

        * sequences: a list of lists of type dtype where each element is a sequence

    Returns a tuple with (indices, values, shape)
    """
    indices = []
    values = []

    for n, seq in enumerate(sequences):
        indices.extend(zip([n]*len(seq), range(len(seq))))
        values.extend(seq)

    indices = np.asarray(indices, dtype=np.int64)
    values = np.asarray(values, dtype=dtype)
    shape = np.asarray([len(sequences), indices.max(0)[1]+1], dtype=np.int64)

    return tf.SparseTensor(indices=indices, values=values, shape=shape)
recognition_utils.py 文件源码 项目:pybot 作者: spillai 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def __init__(self, filename, target_map, classifier='svm'): 

        self.seed_ = 0
        self.filename_ = filename
        self.target_map_ = target_map
        self.target_ids_ = (np.unique(target_map.keys())).astype(np.int32)
        self.epoch_no_ = 0
        self.st_time_ = time.time()

        # Setup classifier
        print('-------------------------------')        
        print('====> Building Classifier, setting class weights') 
        if classifier == 'svm': 
            self.clf_hyparams_ = {'C':[0.01, 0.1, 1.0, 10.0, 100.0], 'class_weight': ['balanced']}
            self.clf_base_ = LinearSVC(random_state=self.seed_)
        elif classifier == 'sgd': 
            self.clf_hyparams_ = {'alpha':[0.0001, 0.001, 0.01, 0.1, 1.0, 10.0], 'class_weight':['auto']} # 'loss':['hinge'], 
            self.clf_ = SGDClassifier(loss='log', penalty='l2', shuffle=False, random_state=self.seed_, 
                                      warm_start=True, n_jobs=-1, n_iter=1, verbose=4)
        else: 
            raise Exception('Unknown classifier type %s. Choose from [sgd, svm, gradient-boosting, extra-trees]' 
                            % classifier)
draw_utils.py 文件源码 项目:pybot 作者: spillai 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def draw_hulls(im, hulls): 
    assert(isinstance(hulls, list))
    cv2.polylines(im, map(lambda hull: hull.astype(np.int32), hulls), 1, (0, 255, 0) if im.ndim == 3 else 255, thickness=1)       
    return im
base_klt.py 文件源码 项目:pybot 作者: spillai 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def draw_tracks(self, out, colored=False, color_type='unique', min_track_length=4, max_track_length=4):
        """
        color_type: {age, unique}
        """

        N = 20
        # inds = self.confident_tracks(min_length=min_track_length)
        # if not len(inds): 
        #     return

        # ids, pts = self.latest_ids[inds], self.latest_pts[inds]
        # lengths = self.tm_.lengths[inds]

        ids, pts, lengths = self.latest_ids, self.latest_pts, self.tm_.lengths

        if color_type == 'unique': 
            cwheel = colormap(np.linspace(0, 1, N))
            cols = np.vstack([cwheel[tid % N] for idx, tid in enumerate(ids)])
        elif color_type == 'age': 
            cols = colormap(lengths)
        else: 
            raise ValueError('Color type {:} undefined, use age or unique'.format(color_type))

        if not colored: 
            cols = np.tile([0,240,0], [len(self.tm_.tracks), 1])

        for col, pts in izip(cols.astype(np.int64), self.tm_.tracks.itervalues()): 
            cv2.polylines(out, [np.vstack(pts.items).astype(np.int32)[-max_track_length:]], False, 
                          tuple(col), thickness=1)
            tl, br = np.int32(pts.latest_item)-2, np.int32(pts.latest_item)+2
            cv2.rectangle(out, (tl[0], tl[1]), (br[0], br[1]), tuple(col), -1)
cpm_utils.py 文件源码 项目:convolutional-pose-machines-tensorflow 作者: timctho 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def warpImage(src, theta, phi, gamma, scale, fovy):
    halfFovy = fovy * 0.5
    d = math.hypot(src.shape[1], src.shape[0])
    sideLength = scale * d / math.cos(deg2Rad(halfFovy))
    sideLength = np.int32(sideLength)

    M = warpMatrix(src.shape[1], src.shape[0], theta, phi, gamma, scale, fovy)
    dst = cv2.warpPerspective(src, M, (sideLength, sideLength))
    mid_x = mid_y = dst.shape[0] // 2
    target_x = target_y = src.shape[0] // 2
    offset = (target_x % 2)

    if len(dst.shape) == 3:
        dst = dst[mid_y - target_y:mid_y + target_y + offset,
              mid_x - target_x:mid_x + target_x + offset,
              :]
    else:
        dst = dst[mid_y - target_y:mid_y + target_y + offset,
              mid_x - target_x:mid_x + target_x + offset]

    return dst
bidirectional.py 文件源码 项目:deep-summarization 作者: harpribot 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def _load_data_graph(self):
        """
        Loads the data graph consisting of the encoder and decoder input placeholders, Label (Target tip summary)
        placeholders and the weights of the hidden layer of the Seq2Seq model.

        :return: None
        """
        # input
        with tf.variable_scope("train_test", reuse=True):
            # review input - Both original and reversed
            self.enc_inp_fwd = [tf.placeholder(tf.int32, shape=(None,), name="input%i" % t)
                                for t in range(self.seq_length)]
            self.enc_inp_bwd = [tf.placeholder(tf.int32, shape=(None,), name="input%i" % t)
                                for t in range(self.seq_length)]
            # desired output
            self.labels = [tf.placeholder(tf.int32, shape=(None,), name="labels%i" % t)
                           for t in range(self.seq_length)]
            # weight of the hidden layer
            self.weights = [tf.ones_like(labels_t, dtype=tf.float32)
                            for labels_t in self.labels]

            # Decoder input: prepend some "GO" token and drop the final
            # token of the encoder input
            self.dec_inp = ([tf.zeros_like(self.labels[0], dtype=np.int32, name="GO")] + self.labels[:-1])
stacked_simple.py 文件源码 项目:deep-summarization 作者: harpribot 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _load_data_graph(self):
        """
        Loads the data graph consisting of the encoder and decoder input placeholders, Label (Target tip summary)
        placeholders and the weights of the hidden layer of the Seq2Seq model.

        :return: None
        """
        # input
        with tf.variable_scope("train_test", reuse=True):
            self.enc_inp = [tf.placeholder(tf.int32, shape=(None,),
                                           name="input%i" % t)
                            for t in range(self.seq_length)]
            # desired output
            self.labels = [tf.placeholder(tf.int32, shape=(None,),
                                          name="labels%i" % t)
                           for t in range(self.seq_length)]
            # weight of the hidden layer
            self.weights = [tf.ones_like(labels_t, dtype=tf.float32)
                            for labels_t in self.labels]

            # Decoder input: prepend some "GO" token and drop the final
            # token of the encoder input
            self.dec_inp = ([tf.zeros_like(self.labels[0], dtype=np.int32, name="GO")]
                            + self.labels[:-1])
simple.py 文件源码 项目:deep-summarization 作者: harpribot 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _load_data_graph(self):
        """
        Loads the data graph consisting of the encoder and decoder input placeholders, Label (Target tip summary)
        placeholders and the weights of the hidden layer of the Seq2Seq model.

        :return: None
        """
        # input
        with tf.variable_scope("train_test", reuse=True):
            self.enc_inp = [tf.placeholder(tf.int32, shape=(None,), name="input%i" % t)
                            for t in range(self.seq_length)]
            # desired output
            self.labels = [tf.placeholder(tf.int32, shape=(None,), name="labels%i" % t)
                           for t in range(self.seq_length)]
            # weight of the hidden layer
            self.weights = [tf.ones_like(labels_t, dtype=tf.float32)
                            for labels_t in self.labels]

            # Decoder input: prepend some "GO" token and drop the final
            # token of the encoder input
            self.dec_inp = ([tf.zeros_like(self.labels[0], dtype=np.int32, name="GO")] + self.labels[:-1])
stacked_bidirectional.py 文件源码 项目:deep-summarization 作者: harpribot 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _load_data_graph(self):
        """
        Loads the data graph consisting of the encoder and decoder input placeholders, Label (Target tip summary)
        placeholders and the weights of the hidden layer of the Seq2Seq model.

        :return: None
        """
        # input
        with tf.variable_scope("train_test", reuse=True):
            # review input - Both original and reversed
            self.enc_inp_fwd = [tf.placeholder(tf.int32, shape=(None,), name="input%i" % t)
                                for t in range(self.seq_length)]
            self.enc_inp_bwd = [tf.placeholder(tf.int32, shape=(None,), name="input%i" % t)
                                for t in range(self.seq_length)]
            # desired output
            self.labels = [tf.placeholder(tf.int32, shape=(None,), name="labels%i" % t)
                           for t in range(self.seq_length)]
            # weight of the hidden layer
            self.weights = [tf.ones_like(labels_t, dtype=tf.float32)
                            for labels_t in self.labels]

            # Decoder input: prepend some "GO" token and drop the final
            # token of the encoder input
            self.dec_inp = ([tf.zeros_like(self.labels[0], dtype=np.int32, name="GO")] + self.labels[:-1])
text_RHL.py 文件源码 项目:AVSR-Deep-Speech 作者: pandeydivesh15 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def sparse_tuple_from(sequences, dtype=np.int32):
    r"""Creates a sparse representention of ``sequences``.
    Args:

        * sequences: a list of lists of type dtype where each element is a sequence

    Returns a tuple with (indices, values, shape)
    """
    indices = []
    values = []

    for n, seq in enumerate(sequences):
        indices.extend(zip([n]*len(seq), range(len(seq))))
        values.extend(seq)

    indices = np.asarray(indices, dtype=np.int64)
    values = np.asarray(values, dtype=dtype)
    shape = np.asarray([len(sequences), indices.max(0)[1]+1], dtype=np.int64)

    return tf.SparseTensor(indices=indices, values=values, shape=shape)
write_functions.py 文件源码 项目:nidaqmx-python 作者: ni 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def _write_binary_i_32(
        task_handle, write_array, num_samps_per_chan, auto_start, timeout,
        data_layout=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_written = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxWriteBinaryI32
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, c_bool32,
                    ctypes.c_double, ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.int32, flags=('C', 'W')),
                    ctypes.POINTER(ctypes.c_int), ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, auto_start, timeout,
        data_layout.value, write_array,
        ctypes.byref(samps_per_chan_written), None)
    check_for_error(error_code)

    return samps_per_chan_written.value
read_functions.py 文件源码 项目:nidaqmx-python 作者: ni 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _read_binary_i_32(
        task_handle, read_array, num_samps_per_chan, timeout,
        fill_mode=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadBinaryI32
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.int32, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, fill_mode.value,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
structure.py 文件源码 项目:treecat 作者: posterior 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def make_complete_graph(num_vertices):
    """Constructs a complete graph.

    The pairing function is: k = v1 + v2 * (v2 - 1) // 2

    Args:
        num_vertices: Number of vertices.

    Returns: A tuple with elements:
        V: Number of vertices.
        K: Number of edges.
        grid: a 3 x K grid of (edge, vertex, vertex) triples.
    """
    V = num_vertices
    K = V * (V - 1) // 2
    grid = np.zeros([3, K], np.int32)
    k = 0
    for v2 in range(V):
        for v1 in range(v2):
            grid[:, k] = [k, v1, v2]
            k += 1
    return grid
util.py 文件源码 项目:treecat 作者: posterior 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def quantize_from_probs2(probs, resolution):
    """Quantize multiple non-normalized probs to given resolution.

    Args:
        probs: An [N, M]-shaped numpy array of non-normalized probabilities.

    Returns:
        An [N, M]-shaped array of quantized probabilities such that
        np.all(result.sum(axis=1) == resolution).
    """
    assert len(probs.shape) == 2
    N, M = probs.shape
    probs = probs / probs.sum(axis=1, keepdims=True)
    result = np.zeros(probs.shape, np.int8)
    range_N = np.arange(N, dtype=np.int32)
    for _ in range(resolution):
        sample = probs.argmax(axis=1)
        result[range_N, sample] += 1
        probs[range_N, sample] -= 1.0 / resolution
    return result
util.py 文件源码 项目:treecat 作者: posterior 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def make_ragged_index(columns):
    """Make an index to hold data in a ragged array.

    Args:
        columns: A list of [N, _]-shaped numpy arrays of varying size, where
            N is the number of rows.

    Returns:
        A [len(columns)+1]-shaped array of begin,end positions of each column.
    """
    ragged_index = np.zeros([len(columns) + 1], dtype=np.int32)
    ragged_index[0] = 0
    for v, column in enumerate(columns):
        ragged_index[v + 1] = ragged_index[v] + column.shape[-1]
    ragged_index.flags.writeable = False
    return ragged_index
data_load.py 文件源码 项目:neurobind 作者: Kyubyong 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def get_batch_data():
    # Load data
    X, Y = load_data()

    # calc total batch count
    num_batch = len(X) // hp.batch_size

    # Convert to tensor
    X = tf.convert_to_tensor(X, tf.int32)
    Y = tf.convert_to_tensor(Y, tf.float32)

    # Create Queues
    input_queues = tf.train.slice_input_producer([X, Y])

    # create batch queues
    x, y = tf.train.batch(input_queues,
                          num_threads=8,
                          batch_size=hp.batch_size,
                          capacity=hp.batch_size * 64,
                          allow_smaller_final_batch=False)

    return x, y, num_batch  # (N, T), (N, T), ()
pyelastix.py 文件源码 项目:pyelastix 作者: almarklein 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _get_dtype_maps():
    """ Get dictionaries to map numpy data types to ITK types and the 
    other way around.
    """

    # Define pairs
    tmp = [ (np.float32, 'MET_FLOAT'),  (np.float64, 'MET_DOUBLE'),
            (np.uint8, 'MET_UCHAR'),    (np.int8, 'MET_CHAR'),
            (np.uint16, 'MET_USHORT'),  (np.int16, 'MET_SHORT'),
            (np.uint32, 'MET_UINT'),    (np.int32, 'MET_INT'),
            (np.uint64, 'MET_ULONG'),   (np.int64, 'MET_LONG') ]

    # Create dictionaries
    map1, map2 = {}, {}
    for np_type, itk_type in tmp:
        map1[np_type.__name__] = itk_type
        map2[itk_type] = np_type.__name__

    # Done
    return map1, map2
hdf5.py 文件源码 项目:cellranger 作者: 10XGenomics 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def reg2bin_vector(begin, end):
    '''Vectorized tabix reg2bin -- much faster than reg2bin'''
    result = np.zeros(begin.shape)

    # Entries filled
    done = np.zeros(begin.shape, dtype=np.bool)

    for (bits, bins) in rev_bit_bins:
        begin_shift = begin >> bits
        new_done = (begin >> bits) == (end >> bits)
        mask = np.logical_and(new_done, np.logical_not(done))
        offset = ((1 << (29 - bits)) - 1) / 7
        result[mask] = offset + begin_shift[mask]

        done = new_done

    return result.astype(np.int32)
coverage.py 文件源码 项目:cellranger 作者: 10XGenomics 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def get_depth_info(read_iter, chrom, cstart, cend):

    depths = np.zeros(cend-cstart, np.int32)

    for read in read_iter:
        pos = read.pos
        rstart = max(pos, cstart)

        # Increment to the end of the window or the end of the
        # alignment, whichever comes first
        rend = min(read.aend, cend)
        depths[(rstart-cstart):(rend-cstart)] += 1

    positions = np.arange(cstart, cend, dtype=np.int32)

    depth_df = pd.DataFrame({"chrom": chrom, "pos": positions, "coverage": depths})
    return depth_df
gcs2.py 文件源码 项目:pi_gcs 作者: lbusoni 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def getDataRecorderConfiguration(self):
        nRecorders= self.getNumberOfRecorderTables()
        sourceBufSize= 256
        source= ctypes.create_string_buffer('\000', sourceBufSize)
        option= CIntArray(np.zeros(nRecorders, dtype=np.int32))
        table=CIntArray(np.arange(1, nRecorders + 1))

        self._lib.PI_qDRC.argtypes= [c_int, CIntArray, c_char_p,
                                     CIntArray, c_int, c_int]

        self._convertErrorToException(
            self._lib.PI_qDRC(self._id, table, source,
                              option, sourceBufSize, nRecorders))

        sources= [x.strip() for x in source.value.split('\n')]
        cfg= DataRecorderConfiguration()
        for i in range(nRecorders):
            cfg.setTable(table.toNumpyArray()[i],
                         sources[i],
                         option.toNumpyArray()[i])
        return cfg
flo2img.py 文件源码 项目:Deep360Pilot-optical-flow 作者: yenchenlin 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def read_flow(path, filename):
    flowdata = None
    with open(path + filename + '.flo') as f:
        # Valid .flo file checker
        magic = np.fromfile(f, np.float32, count=1)
        if 202021.25 != magic:
            print 'Magic number incorrect. Invalid .flo file'
        else:
            # Reshape data into 3D array (columns, rows, bands)
            w = int(np.fromfile(f, np.int32, count=1))
            h = int(np.fromfile(f, np.int32, count=1))
            #print 'Reading {}.flo with shape: ({}, {}, 2)'.format(filename, h, w)
            flowdata = np.fromfile(f, np.float32, count=2*w*h)

            # NOTE: numpy shape(h, w, ch) is opposite to image shape(w, h, ch)
            flowdata = np.reshape(flowdata, (h, w, 2))

    return flowdata
RankOrderedAutoencoder.py 文件源码 项目:rank-ordered-autoencoder 作者: paulbertens 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def __init__(self, input_shape, output_shape):
        self.input_shape = input_shape
        self.input = np.zeros((output_shape[0], self.input_shape[0] * self.input_shape[1] *
                               self.input_shape[2]),dtype=np.float32)
        self.output = np.zeros(output_shape, dtype=np.float32)
        self.output_raw = np.zeros_like(self.output)
        self.output_error = np.zeros_like(self.output)
        self.output_average = np.zeros(self.output.shape[1], dtype=np.float32)
        self.weights = np.random.normal(0, np.sqrt(2.0 / (self.output.shape[1] + self.input.shape[1])),
                                        size=(self.input.shape[1], self.output.shape[1])).astype(np.float32)
        self.gradient = np.zeros_like(self.weights)
        self.reconstruction = np.zeros_like(self.weights)
        self.errors = np.zeros_like(self.weights)
        self.output_ranks = np.zeros(self.output.shape[1], dtype=np.int32)
        self.learning_rate = 1
        self.norm_limit = 0.1
plot_quasar_transform.py 文件源码 项目:genomedisco 作者: kundajelab 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def load_data(infile, chroms, resolutions):
    starts = infile['starts'][...]
    chromosomes = infile['chromosomes'][...]
    data = {}
    for res in resolutions:
        data[res] = {}
        for i, chrom in enumerate(chromosomes):
            if chrom not in chroms:
                continue
            start = (starts[i] / res) * res
            dist = infile['dist.%s.%i' % (chrom, res)][...]
            valid_rows = infile['valid.%s.%i' % (chrom, res)][...]
            corr = infile['corr.%s.%i' % (chrom, res)][...]
            valid = numpy.zeros(corr.shape, dtype=numpy.bool)
            N, M = corr.shape
            valid = numpy.zeros((N, M), dtype=numpy.int32)
            for i in range(min(N - 1, M)):
                P = N - i - 1
                valid[:P, i] = valid_rows[(i + 1):] * valid_rows[:P]
            temp = corr * dist
            valid[numpy.where(numpy.abs(temp) == numpy.inf)] = False
            data[res][chrom] = [start, temp, valid]
    return data
plot_quasar_scatter.py 文件源码 项目:genomedisco 作者: kundajelab 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def load_data(infile, chroms, resolutions):
    starts = infile['starts'][...]
    chromosomes = infile['chromosomes'][...]
    data = {}
    for res in resolutions:
        data[res] = {}
        for i, chrom in enumerate(chromosomes):
            if chrom not in chroms:
                continue
            start = (starts[i] / res) * res
            dist = infile['dist.%s.%i' % (chrom, res)][...]
            valid_rows = infile['valid.%s.%i' % (chrom, res)][...]
            corr = infile['corr.%s.%i' % (chrom, res)][...]
            valid = numpy.zeros(corr.shape, dtype=numpy.bool)
            N, M = corr.shape
            valid = numpy.zeros((N, M), dtype=numpy.int32)
            for i in range(min(N - 1, M)):
                P = N - i - 1
                valid[:P, i] = valid_rows[(i + 1):] * valid_rows[:P]
            temp = corr * dist
            valid[numpy.where(numpy.abs(temp) == numpy.inf)] = False
            data[res][chrom] = [start, temp, valid]
    return data
dataset.py 文件源码 项目:sampleRNN_ICLR2017 作者: soroushmehr 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __linear_quantize(data, q_levels):
    """
    floats in (0, 1) to ints in [0, q_levels-1]
    scales normalized across axis 1
    """
    # Normalization is on mini-batch not whole file
    #eps = numpy.float64(1e-5)
    #data -= data.min(axis=1)[:, None]
    #data *= ((q_levels - eps) / data.max(axis=1)[:, None])
    #data += eps/2
    #data = data.astype('int32')

    eps = numpy.float64(1e-5)
    data *= (q_levels - eps)
    data += eps/2
    data = data.astype('int32')
    return data
snippets.py 文件源码 项目:HandDetection 作者: YunqiuXu 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def generate_anchors_pre(height, width, feat_stride, anchor_scales=(8,16,32), anchor_ratios=(0.5,1,2)):
  """ A wrapper function to generate anchors given different scales
    Also return the number of anchors in variable 'length'
  """
  anchors = generate_anchors(ratios=np.array(anchor_ratios), scales=np.array(anchor_scales))
  A = anchors.shape[0]
  shift_x = np.arange(0, width) * feat_stride
  shift_y = np.arange(0, height) * feat_stride
  shift_x, shift_y = np.meshgrid(shift_x, shift_y)
  shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose()
  K = shifts.shape[0]
  # width changes faster, so here it is H, W, C
  anchors = anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2))
  anchors = anchors.reshape((K * A, 4)).astype(np.float32, copy=False)
  length = np.int32(anchors.shape[0])

  return anchors, length
repeat_test.py 文件源码 项目:cxflow-tensorflow 作者: Cognexa 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def test_repeat(self):
        """ Test if `repeat` works the same as np.repeat."""

        with tf.Session().as_default():
            # try different tensor types
            for npdtype, tfdtype in [(np.int32, tf.int32), (np.float32, tf.float32)]:
                for init_value in [np.array([0, 1, 2, 3], dtype=npdtype),
                                   np.array([[0, 1], [2, 3], [4, 5]], dtype=npdtype)]:
                    # and all their axes
                    for axis in range(len(init_value.shape)):
                        for repeats in [1, 2, 3, 11]:
                            tensor = tf.constant(init_value, dtype=tfdtype)

                            repeated_value = repeat(tensor, repeats=repeats, axis=axis).eval()
                            expected_value = np.repeat(init_value, repeats=repeats, axis=axis)

                            self.assertTrue(np.all(repeated_value == expected_value))
uw_rgbd.py 文件源码 项目:pybot 作者: spillai 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def __init__(self, target, instance, files): 
            self.target = target 
            self.instance = instance
            mask_files = natural_sort(filter(lambda fn: '_maskcrop.png' in fn, files))
            depth_files = natural_sort(filter(lambda  fn: '_depthcrop.png' in fn, files))
            rgb_files = natural_sort(list(set(files) - set(mask_files) - set(depth_files)))
            loc_files = natural_sort(map(lambda fn: fn.replace('_crop.png', '_loc.txt'), rgb_files))

            # Ensure all have equal number of files (Hack! doesn't ensure filename consistency)
            nfiles = np.min([len(loc_files), len(mask_files), len(depth_files), len(rgb_files)])
            mask_files, depth_files, rgb_files, loc_files = mask_files[:nfiles], depth_files[:nfiles], \
                                                            rgb_files[:nfiles], loc_files[:nfiles]

            # print target, instance, len(loc_files), len(mask_files), len(depth_files), len(rgb_files)
            assert(len(mask_files) == len(depth_files) == len(rgb_files) == len(loc_files))

            # Read images
            self.rgb = ImageDatasetReader.from_filenames(rgb_files)
            self.depth = ImageDatasetReader.from_filenames(depth_files)
            self.mask = ImageDatasetReader.from_filenames(mask_files)

            # Read top-left locations of bounding box
            self.locations = np.vstack([np.loadtxt(loc, delimiter=',', dtype=np.int32) 
                                        for loc in loc_files])


问题


面经


文章

微信
公众号

扫码关注公众号