python类ndarray()的实例源码

x2num.py 文件源码 项目:tensorboard 作者: dmlc 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def make_grid(I, ncols=8):
    assert isinstance(I, np.ndarray), 'plugin error, should pass numpy array here'
    assert I.ndim == 4 and I.shape[1] == 3
    nimg = I.shape[0]
    H = I.shape[2]
    W = I.shape[3]
    ncols = min(nimg, ncols)
    nrows = int(np.ceil(float(nimg) / ncols))
    canvas = np.zeros((3, H * nrows, W * ncols))
    i = 0
    for y in range(nrows):
        for x in range(ncols):
            if i >= nimg:
                break
            canvas[:, y * H:(y + 1) * H, x * W:(x + 1) * W] = I[i]
            i = i + 1
    return canvas
Falafel Vision Processing.py 文件源码 项目:Millennium-Eye 作者: Elysium1937 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def sizeFiltering(contours):
    """
    this function filters out the smaller retroreflector (as well as any noise) by size
    """

    if len(contours) == 0:
        print "sizeFiltering: Error, no contours found"
        return 0

    big = contours[0]

    for c in contours:
        if type(c) and type(big) == numpy.ndarray:
            if cv2.contourArea(c) > cv2.contourArea(big):
                big = c
        else:
            print type(c) and type(big)
            return 0
    x,y,w,h = cv2.boundingRect(big)
    return big
tdlm_model.py 文件源码 项目:topically-driven-language-model 作者: jhlau 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def generate(self, sess, conv_hidden, start_word_id, temperature, max_length, stop_word_id):
        state = sess.run(self.cell.zero_state(1, tf.float32))
        x = [[start_word_id]]
        sent = [start_word_id]

        for _ in xrange(max_length):
            if type(conv_hidden) is np.ndarray:
            #if conv_hidden != None:
                probs, state = sess.run([self.probs, self.state], \
                    {self.x: x, self.initial_state: state, self.conv_hidden: conv_hidden})
            else:
                probs, state = sess.run([self.probs, self.state], \
                    {self.x: x, self.initial_state: state})
            sent.append(self.sample(probs[0], temperature))
            if sent[-1] == stop_word_id:
                break
            x = [[ sent[-1] ]]

        return sent

    #generate a sequence of words, given a topic
mpibase.py 文件源码 项目:mpiFFT4py 作者: spectralDNS 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def __keytransform__(self, key):
        if isinstance(key[0], np.ndarray):
            shape = key[0].shape
            dtype = key[0].dtype
            i = key[1]
            zero = True if len(key) == 2 else key[2]

        elif isinstance(key[0], tuple):
            if len(key) == 3:
                shape, dtype, i = key
                zero = True

            elif len(key) == 4:
                shape, dtype, i, zero = key

        else:
            raise TypeError("Wrong type of key for work array")

        assert isinstance(zero, bool)
        assert isinstance(i, int)
        self.fillzero = zero
        return (shape, np.dtype(dtype), i)
regions.py 文件源码 项目:pyfds 作者: emtpb 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def apply(self, old_values, step):
        """Apply the boundary.

        Args:
            old_values: Old values of the points in the boundary.
            step: Time step of the simulation (required if signals are to be applied).

        Returns:
            New values for the points in the boundary.
        """

        if np.ndim(self.value) == 0 or \
                (np.ndim(self.value) == 1 and type(self.value) == list):
            # if a single value or a list of single values for each index is given
                return self.additive * old_values + self.value
        elif type(self.value) == np.ndarray:
            # if a signal is given
            return self.additive * old_values + self.value[step]
        else:
            # if a list of signals for each index is given
            return [self.additive * old_values[ii] + signal[step]
                    for ii, signal in enumerate(self.value)]
nn1_stress_test.py 文件源码 项目:YellowFin_Pytorch 作者: JianGoForIt 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def test_accuracy_full_batch(tokens, features, mini_batch_size, word_attn, sent_attn, th=0.5):
    p = []
    l = []
    cnt = 0
    g = gen_minibatch1(tokens, features, mini_batch_size, False)
    for token, feature in g:
        if cnt % 100 == 0:
            print(cnt)
        cnt +=1
#         print token.size()
#         y_pred = get_predictions(token, word_attn, sent_attn)
#         print y_pred
        y_pred = get_predictions(token, feature, word_attn, sent_attn)
#         print y_pred
#         _, y_pred = torch.max(y_pred, 1)
#         y_pred = y_pred[:, 1]
#         print y_pred
        p.append(np.ndarray.flatten(y_pred.data.cpu().numpy()))
    p = [item for sublist in p for item in sublist]
    p = np.array(p)
    return p
training.py 文件源码 项目:treecat 作者: posterior 项目源码 文件源码 阅读 49 收藏 0 点赞 0 评论 0
def __init__(self, N, V, tree_prior, config):
        """Initialize a model with an empty subsample.

        Args:
            N (int): Number of rows in the dataset.
            V (int): Number of columns (features) in the dataset.
            tree_prior: A [K]-shaped numpy array of prior edge log odds, where
                K is the number of edges in the complete graph on V vertices.
            config: A global config dict.
        """
        assert isinstance(N, int)
        assert isinstance(V, int)
        assert isinstance(tree_prior, np.ndarray)
        assert isinstance(config, dict)
        K = V * (V - 1) // 2  # Number of edges in complete graph.
        assert V <= 32768, 'Invalid # features > 32768: {}'.format(V)
        assert tree_prior.shape == (K, )
        assert tree_prior.dtype == np.float32
        self._config = config.copy()
        self._num_rows = N
        self._tree_prior = tree_prior
        self._tree = TreeStructure(V)
        assert self._tree.num_vertices == V
        self._program = make_propagation_program(self._tree.tree_grid)
        self._added_rows = set()
training.py 文件源码 项目:treecat 作者: posterior 项目源码 文件源码 阅读 52 收藏 0 点赞 0 评论 0
def __init__(self, data, tree_prior, config):
        """Initialize a model with an empty subsample.

        Args:
            data: An [N, V]-shaped numpy array of real-valued data.
            tree_prior: A [K]-shaped numpy array of prior edge log odds, where
                K is the number of edges in the complete graph on V vertices.
            config: A global config dict.
        """
        assert isinstance(data, np.ndarray)
        data = np.asarray(data, np.float32)
        assert len(data.shape) == 2
        N, V = data.shape
        D = config['model_latent_dim']
        E = V - 1  # Number of edges in the tree.
        TreeTrainer.__init__(self, N, V, tree_prior, config)
        self._data = data
        self._latent = np.zeros([N, V, D], np.float32)

        # This is symmetric positive definite.
        self._vert_ss = np.zeros([V, D, D], np.float32)
        # This is arbitrary (not necessarily symmetric).
        self._edge_ss = np.zeros([E, D, D], np.float32)
        # This represents (count, mean, covariance).
        self._feat_ss = np.zeros([V, D, 1 + 1 + D], np.float32)
bluefile.py 文件源码 项目:core-framework 作者: RedhawkSDR 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def set_type2000_format(format=list):
    """
    Sets the data format returned when reading in type 2000 files.

    The default is 'list', meaning a list of NumPy arrays, where the
    length of each array is equal to the frame size. To return type 2000
    data as a 2-d array, <format> should be 'numpy.ndarray', e.g.:

      import bluefile, numpy
      bluefile.set_type2000_format(numpy.ndarray)

    Note that <format> is expected to a type object.
    """
    global _type2000_format
    if format not in [ list, numpy.ndarray ]:
        raise TypeError, 'Only list and numpy.ndarray are supported'
    _type2000_format = format
array_stream.py 文件源码 项目:npstreams 作者: LaurentRDC 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def array_stream(func):
    """ 
    Decorates streaming functions to make sure that the stream
    is a stream of ndarrays. Objects that are not arrays are transformed 
    into arrays. If the stream is in fact a single ndarray, this ndarray 
    is repackaged into a sequence of length 1.

    The first argument of the decorated function is assumed to be an iterable of
    arrays, or an iterable of objects that can be casted to arrays.
    """
    @wraps(func)    # thanks functools
    def decorated(arrays, *args, **kwargs):
        if isinstance(arrays, ndarray):
            arrays = (arrays,)
        return func(map(atleast_1d, arrays), *args, **kwargs)
    return decorated
array_stream.py 文件源码 项目:npstreams 作者: LaurentRDC 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def iload(files, load_func, **kwargs):
    """
    Create a stream of arrays from files, which are loaded lazily.

    Parameters
    ----------
    pattern : iterable of str or str
        Either an iterable of filenames or a glob-like pattern str.
    load_func : callable, optional
        Function taking a filename as its first arguments
    kwargs
        Keyword arguments are passed to ``load_func``.

    Yields
    ------
    arr: `~numpy.ndarray`
        Loaded data. 
    """
    if isinstance(files, str):
        files = iglob(files)
    files = iter(files)

    yield from map(partial(load_func, **kwargs), files)

# pmap does not support local functions
pyelastix.py 文件源码 项目:pyelastix 作者: almarklein 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def _get_fixed_params(im):
    """ Parameters that the user has no influence on. Mostly chosen
    bases on the input images.
    """

    p = Parameters()

    if not isinstance(im, np.ndarray):
        return p

    # Dimension of the inputs
    p.FixedImageDimension = im.ndim
    p.MovingImageDimension = im.ndim

    # Always write result, so I can verify
    p.WriteResultImage = True

    # How to write the result
    tmp = DTYPE_NP2ITK[im.dtype.name]
    p.ResultImagePixelType = tmp.split('_')[-1].lower()
    p.ResultImageFormat = "mhd"

    # Done
    return p
image_transformer.py 文件源码 项目:xpandas 作者: alan-turing-institute 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def __init__(self, skimage_function=None, **function_params):
        '''
        :param skimage_function: transformation function from skimage
        '''
        accepted_types = [
            list, np.ndarray, np.array
        ]

        if skimage_function is None:
            raise Exception('Please specify transform function from scikit-image'
                            ' http://scikit-image.org/docs/dev/api/skimage.transform.html')

        def image_transform_function(img):
            return skimage_function(img, **function_params)

        super(ImageTransformer, self).__init__(data_types=accepted_types,
                                               columns=None,
                                               transform_function=image_transform_function)
test_image_transformers.py 文件源码 项目:xpandas 作者: alan-turing-institute 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def test_image_transformation():
    s = XSeries([generate_image(False) for _ in range(100)])

    try:
        image_transformer = ImageTransformer().fit()
        assert False
    except:
        assert True

    image_transformer = ImageTransformer(skimage_transform.hough_circle, radius=5).fit()
    s_transformed = image_transformer.transform(s)

    assert s_transformed.data_type == np.ndarray

    image_transformer = ImageTransformer(skimage_transform.resize, output_shape=(10, 10)).fit()
    s_transformed = image_transformer.transform(s)

    assert s_transformed.data_type == np.ndarray
graphclust.py 文件源码 项目:cellranger 作者: 10XGenomics 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def compute_nearest_neighbors(submatrix, balltree, k, row_start):
    """ Compute k nearest neighbors on a submatrix
    Args: submatrix (np.ndarray): Data submatrix
          balltree: Nearest neighbor index (from sklearn)
          k: number of nearest neigbors to compute
          row_start: row offset into larger matrix
    Returns a COO sparse adjacency matrix of nearest neighbor relations as (i,j,x)"""

    nn_dist, nn_idx = balltree.query(submatrix, k=k+1)

    # Remove the self-as-neighbors
    nn_idx = nn_idx[:,1:]
    nn_dist = nn_dist[:,1:]

    # Construct a COO sparse matrix of edges and distances
    i = np.repeat(row_start + np.arange(nn_idx.shape[0]), k)
    j = nn_idx.ravel().astype(int)
    return (i, j, nn_dist.ravel())
plotter_impls.py 文件源码 项目:live-plotter 作者: anandtrex 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def plot_loop(self, image, it):
        """
        The actual function that updates the data in the plot initialized in :meth:`~.init`

        :param image: The image that is recorded with :class:`~.PlotRecorder`. It should be a 2-D numpy array
        :param it: The iteration number (independent of the actual x value)
        :return:
        """
        logger.debug("Plotting %s in %s", self.var_name, self.entity_name)

        assert isinstance(image, np.ndarray), "The passed in image should by a numpy array"
        assert len(image.shape) == 2, "The image to be shown should be 2-dimensional"

        if it == 0:
            self.im = self.ax.imshow(image, **self.imshow_kwargs)

        else:
            if it % self.plot_frequency == 0:
                self.im.set_array(image)
x2num.py 文件源码 项目:tensorboard 作者: dmlc 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def _prepare_image(I):
    assert isinstance(I, np.ndarray), 'plugin error, should pass numpy array here'
    assert I.ndim == 2 or I.ndim == 3 or I.ndim == 4
    if I.ndim == 4:  # NCHW
        if I.shape[1] == 1:  # N1HW
            I = np.concatenate((I, I, I), 1)  # N3HW
        assert I.shape[1] == 3
        I = make_grid(I)  # 3xHxW
    if I.ndim == 3 and I.shape[0] == 1:  # 1xHxW
        I = np.concatenate((I, I, I), 0)  # 3xHxW
    if I.ndim == 2:  # HxW
        I = np.expand_dims(I, 0)  # 1xHxW
        I = np.concatenate((I, I, I), 0)  # 3xHxW
    I = I.transpose(1, 2, 0)

    return I
SLIMCoefficientConstraints.py 文件源码 项目:slim-python 作者: ustunb 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def check_numeric_input(self, input_name, input_value):
        if type(input_value) is np.ndarray:

            if input_value.size == self.P:
                setattr(self, input_name, input_value)
            elif input_value.size == 1:
                setattr(self, input_name, input_value*np.ones(self.P))
            else:
                raise ValueError("length of %s is %d; should be %d" % (input_name, input_value.size, self.P))

        elif type(input_value) is float or type(input_value) is int:
            setattr(self, input_name, float(input_value)*np.ones(self.P))

        elif type(input_value) is list:
            if len(input_value) == self.P:
                setattr(self, input_name, np.array([float(x) for x in input_value]))
            elif len(input_value) == 1:
                setattr(self, input_name, np.array([float(x) for x in input_value]) * np.ones(self.P))
            else:
                raise ValueError("length of %s is %d; should be %d" % (input_name, len(input_value), self.P))

        else:
            raise ValueError("user provided %s with an unsupported type" % (input_name))
utils.py 文件源码 项目:brain_segmentation 作者: Ryo-Ito 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def load_nifti(filename, with_affine=False):
    """
    load image from NIFTI file
    Parameters
    ----------
    filename : str
        filename of NIFTI file
    with_affine : bool
        if True, returns affine parameters

    Returns
    -------
    data : np.ndarray
        image data
    """
    img = nib.load(filename)
    data = img.get_data()
    data = np.copy(data, order="C")
    if with_affine:
        return data, img.affine
    return data
property_spatial_image.py 文件源码 项目:tissue_analysis 作者: VirtualPlants 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def update_image_property(self, property_name, property_data, erase_property=False):
        if isinstance(property_data,list) or isinstance(property_data,np.ndarray):
            assert len(property_data) == len(self._labels)
            property_keys = self._labels
        elif isinstance(property_data,dict) or isinstance(property_data,array_dict):
            property_keys = np.sort(property_data.keys())
            property_data = [property_data[l] for l in property_keys]

        if property_name in self._properties.keys():
            if erase_property:
                self._properties[property_name] = array_dict(property_data,keys=property_keys)
            else:
                for l,v in zip(property_keys,property_data):
                    self._properties[property_name][l] = v
        else:
            print "Creating property ",property_name," on image"
            self._properties[property_name] = array_dict(property_data,keys=property_keys)
sia_to_triangular_mesh.py 文件源码 项目:tissue_analysis 作者: VirtualPlants 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def spatial_image_analysis_property(sia, property_name, labels=None):

    if property_name == 'volume':
        property_data = sia.volume(labels)
    elif property_name == 'neighborhood_size':
        property_data = sia.neighbors_number(labels)
    elif property_name == 'shape_anisotropy':
        inertia_axes_vectors, inertia_axes_values = sia.inertia_axis(labels)
        property_data = [fractional_anisotropy(inertia_axes_values[l]) for l in labels]
    elif property_name == 'gaussian_curvature':
        property_data = sia.gaussian_curvature_CGAL(labels)
    else:
        property_data = dict(zip(labels,labels))

    if isinstance(property_data,np.ndarray) or isinstance(property_data,list):
        property_data = array_dict(property_data, keys=labels)
    elif isinstance(property_data,dict):
        property_data = array_dict(property_data) 

    return property_data
mapped_struct.py 文件源码 项目:sharedbuffers 作者: jampp 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def __init__(self, buf, offset = 0):
        # Accelerate class attributes
        self._encode = self.encode
        self._dtype = self.dtype
        self._xxh = self.xxh

        # Initialize buffer
        if offset:
            self._buf = self._likebuf = buffer(buf, offset)
        else:
            self._buf = buf
            self._likebuf = _likebuffer(buf)

        # Parse header and map index
        self.index_elements, self.index_offset = self._Header.unpack_from(self._buf, 0)

        self.index = numpy.ndarray(buffer = self._buf, 
            offset = self.index_offset, 
            dtype = self.dtype, 
            shape = (self.index_elements, 3))
ArrayDict.py 文件源码 项目:CausalGAN 作者: mkocaoglu 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def validate_dict(self,a_dict):
        #Check keys
        for key,val in self.dict.items():
            if not key in a_dict.keys():
                raise ValueError('key:',key,'was not in a_dict.keys()')

        for key,val in a_dict.items():
            #Check same keys
            if not key in self.dict.keys():
                raise ValueError('argument key:',key,'was not in self.dict')

            if isinstance(val,np.ndarray):
                #print('ndarray')
                my_val=self.dict[key]
                if not np.all(val.shape[1:]==my_val.shape[1:]):
                    raise ValueError('key:',key,'value shape',val.shape,'does\
                                     not match existing shape',my_val.shape)
            else: #scalar
                a_val=np.array([[val]])#[1,1]shape array
                my_val=self.dict[key]
                if not np.all(my_val.shape[1:]==a_val.shape[1:]):
                    raise ValueError('key:',key,'value shape',val.shape,'does\
                                     not match existing shape',my_val.shape)
ImageView.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def roiChanged(self):
        if self.image is None:
            return

        image = self.getProcessedImage()
        if image.ndim == 2:
            axes = (0, 1)
        elif image.ndim == 3:
            axes = (1, 2)
        else:
            return

        data, coords = self.roi.getArrayRegion(image.view(np.ndarray), self.imageItem, axes, returnMappedCoords=True)
        if data is not None:
            while data.ndim > 1:
                data = data.mean(axis=1)
            if image.ndim == 3:
                self.roiCurve.setData(y=data, x=self.tVals)
            else:
                while coords.ndim > 2:
                    coords = coords[:,:,0]
                coords = coords - coords[:,0,np.newaxis]
                xvals = (coords**2).sum(axis=0) ** 0.5
                self.roiCurve.setData(y=data, x=xvals)
PlotDataItem.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def dataType(obj):
    if hasattr(obj, '__len__') and len(obj) == 0:
        return 'empty'
    if isinstance(obj, dict):
        return 'dictOfLists'
    elif isSequence(obj):
        first = obj[0]

        if (hasattr(obj, 'implements') and obj.implements('MetaArray')):
            return 'MetaArray'
        elif isinstance(obj, np.ndarray):
            if obj.ndim == 1:
                if obj.dtype.names is None:
                    return 'listOfValues'
                else:
                    return 'recarray'
            elif obj.ndim == 2 and obj.dtype.names is None and obj.shape[1] == 2:
                return 'Nx2array'
            else:
                raise Exception('array shape must be (N,) or (N,2); got %s instead' % str(obj.shape))
        elif isinstance(first, dict):
            return 'listOfDicts'
        else:
            return 'listOfValues'
PlotItem.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _plotMetaArray(self, arr, x=None, autoLabel=True, **kargs):
        inf = arr.infoCopy()
        if arr.ndim != 1:
            raise Exception('can only automatically plot 1 dimensional arrays.')
        ## create curve
        try:
            xv = arr.xvals(0)
        except:
            if x is None:
                xv = np.arange(arr.shape[0])
            else:
                xv = x
        c = PlotCurveItem(**kargs)
        c.setData(x=xv, y=arr.view(np.ndarray))

        if autoLabel:
            name = arr._info[0].get('name', None)
            units = arr._info[0].get('units', None)
            self.setLabel('bottom', text=name, units=units)

            name = arr._info[1].get('name', None)
            units = arr._info[1].get('units', None)
            self.setLabel('left', text=name, units=units)

        return c
ScatterPlotItem.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 53 收藏 0 点赞 0 评论 0
def setPen(self, *args, **kargs):
        """Set the pen(s) used to draw the outline around each spot.
        If a list or array is provided, then the pen for each spot will be set separately.
        Otherwise, the arguments are passed to pg.mkPen and used as the default pen for
        all spots which do not have a pen explicitly set."""
        update = kargs.pop('update', True)
        dataSet = kargs.pop('dataSet', self.data)

        if len(args) == 1 and (isinstance(args[0], np.ndarray) or isinstance(args[0], list)):
            pens = args[0]
            if 'mask' in kargs and kargs['mask'] is not None:
                pens = pens[kargs['mask']]
            if len(pens) != len(dataSet):
                raise Exception("Number of pens does not match number of points (%d != %d)" % (len(pens), len(dataSet)))
            dataSet['pen'] = pens
        else:
            self.opts['pen'] = fn.mkPen(*args, **kargs)

        dataSet['sourceRect'] = None
        if update:
            self.updateSpots(dataSet)
ScatterPlotItem.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def setBrush(self, *args, **kargs):
        """Set the brush(es) used to fill the interior of each spot.
        If a list or array is provided, then the brush for each spot will be set separately.
        Otherwise, the arguments are passed to pg.mkBrush and used as the default brush for
        all spots which do not have a brush explicitly set."""
        update = kargs.pop('update', True)
        dataSet = kargs.pop('dataSet', self.data)

        if len(args) == 1 and (isinstance(args[0], np.ndarray) or isinstance(args[0], list)):
            brushes = args[0]
            if 'mask' in kargs and kargs['mask'] is not None:
                brushes = brushes[kargs['mask']]
            if len(brushes) != len(dataSet):
                raise Exception("Number of brushes does not match number of points (%d != %d)" % (len(brushes), len(dataSet)))
            dataSet['brush'] = brushes
        else:
            self.opts['brush'] = fn.mkBrush(*args, **kargs)
            #self._spotPixmap = None

        dataSet['sourceRect'] = None
        if update:
            self.updateSpots(dataSet)
ScatterPlotItem.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def setSymbol(self, symbol, update=True, dataSet=None, mask=None):
        """Set the symbol(s) used to draw each spot.
        If a list or array is provided, then the symbol for each spot will be set separately.
        Otherwise, the argument will be used as the default symbol for
        all spots which do not have a symbol explicitly set."""
        if dataSet is None:
            dataSet = self.data

        if isinstance(symbol, np.ndarray) or isinstance(symbol, list):
            symbols = symbol
            if mask is not None:
                symbols = symbols[mask]
            if len(symbols) != len(dataSet):
                raise Exception("Number of symbols does not match number of points (%d != %d)" % (len(symbols), len(dataSet)))
            dataSet['symbol'] = symbols
        else:
            self.opts['symbol'] = symbol
            self._spotPixmap = None

        dataSet['sourceRect'] = None
        if update:
            self.updateSpots(dataSet)
ScatterPlotItem.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def setSize(self, size, update=True, dataSet=None, mask=None):
        """Set the size(s) used to draw each spot.
        If a list or array is provided, then the size for each spot will be set separately.
        Otherwise, the argument will be used as the default size for
        all spots which do not have a size explicitly set."""
        if dataSet is None:
            dataSet = self.data

        if isinstance(size, np.ndarray) or isinstance(size, list):
            sizes = size
            if mask is not None:
                sizes = sizes[mask]
            if len(sizes) != len(dataSet):
                raise Exception("Number of sizes does not match number of points (%d != %d)" % (len(sizes), len(dataSet)))
            dataSet['size'] = sizes
        else:
            self.opts['size'] = size
            self._spotPixmap = None

        dataSet['sourceRect'] = None
        if update:
            self.updateSpots(dataSet)


问题


面经


文章

微信
公众号

扫码关注公众号