python类where()的实例源码

checkPDFeaturesStrRed.py 文件源码 项目:Homology_BG 作者: jyotikab 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def spec_entropy(Rates,time_range=[],bin_w = 5.,freq_range = []):
    '''Function to calculate the spectral entropy'''

        power,freq,dfreq,dummy,dummy = mypsd(Rates,time_range,bin_w = bin_w)
        if freq_range != []:
                power = power[(freq>=freq_range[0]) & (freq <= freq_range[1])]
                freq = freq[(freq>=freq_range[0]) & (freq <= freq_range[1])]
        maxFreq = freq[np.where(power==np.max(power))]*1000*100
        perMax = (np.max(power)/np.sum(power))*100
        k = len(freq)
        power = power/sum(power)
        sum_power = 0
        for ii in range(k):
                sum_power += (power[ii]*np.log(power[ii]))
        spec_ent = -(sum_power/np.log(k))
        return spec_ent,dfreq,maxFreq,perMax
multigenome.py 文件源码 项目:cellranger 作者: 10XGenomics 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def _classify_gems(counts0, counts1):
        """ Infer number of distinct transcriptomes present in each GEM (1 or 2) and
            report cr_constants.GEM_CLASS_GENOME0 for a single cell w/ transcriptome 0,
            report cr_constants.GEM_CLASS_GENOME1 for a single cell w/ transcriptome 1,
            report cr_constants.GEM_CLASS_MULTIPLET for multiple transcriptomes """
        # Assumes that most of the GEMs are single-cell; model counts independently
        thresh0, thresh1 = [cr_constants.DEFAULT_MULTIPLET_THRESHOLD] * 2
        if sum(counts0 > counts1) >= 1 and sum(counts1 > counts0) >= 1:
            thresh0 = np.percentile(counts0[counts0 > counts1], cr_constants.MULTIPLET_PROB_THRESHOLD)
            thresh1 = np.percentile(counts1[counts1 > counts0], cr_constants.MULTIPLET_PROB_THRESHOLD)

        doublet = np.logical_and(counts0 >= thresh0, counts1 >= thresh1)
        dtype = np.dtype('|S%d' % max(len(cls) for cls in cr_constants.GEM_CLASSES))
        result = np.where(doublet, cr_constants.GEM_CLASS_MULTIPLET, cr_constants.GEM_CLASS_GENOME0).astype(dtype)
        result[np.logical_and(np.logical_not(result == cr_constants.GEM_CLASS_MULTIPLET), counts1 > counts0)] = cr_constants.GEM_CLASS_GENOME1

        return result
annotations.py 文件源码 项目:cellranger 作者: 10XGenomics 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def get_concat_reference_sequence(self):
        """Return a concatenated reference sequence.

        Return value:
        - (None,None) if this contig isn't annotated with a V and a J segment.
        Otherwise a tuple (seqs, annos) where annos is a list of Annotation objects
        in the order that they should appear in a VDJ sequence and seqs is a list
        of corresponding sequences from the input fasta.
        """
        v_region = self.get_region_hits(VDJ_V_FEATURE_TYPES)
        j_region = self.get_region_hits(VDJ_J_FEATURE_TYPES)

        if not v_region or not j_region:
            return (None, None)

        seqs = []
        ordered_annos = []
        for region_defs in VDJ_ORDERED_REGIONS:
            regions = self.get_region_hits(region_defs)
            if regions:
                seqs.append(regions[0].feature.sequence)
                ordered_annos.append(regions[0])

        return (seqs, ordered_annos)
plot_quasar_transform.py 文件源码 项目:genomedisco 作者: kundajelab 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def load_data(infile, chroms, resolutions):
    starts = infile['starts'][...]
    chromosomes = infile['chromosomes'][...]
    data = {}
    for res in resolutions:
        data[res] = {}
        for i, chrom in enumerate(chromosomes):
            if chrom not in chroms:
                continue
            start = (starts[i] / res) * res
            dist = infile['dist.%s.%i' % (chrom, res)][...]
            valid_rows = infile['valid.%s.%i' % (chrom, res)][...]
            corr = infile['corr.%s.%i' % (chrom, res)][...]
            valid = numpy.zeros(corr.shape, dtype=numpy.bool)
            N, M = corr.shape
            valid = numpy.zeros((N, M), dtype=numpy.int32)
            for i in range(min(N - 1, M)):
                P = N - i - 1
                valid[:P, i] = valid_rows[(i + 1):] * valid_rows[:P]
            temp = corr * dist
            valid[numpy.where(numpy.abs(temp) == numpy.inf)] = False
            data[res][chrom] = [start, temp, valid]
    return data
plot_quasar_scatter.py 文件源码 项目:genomedisco 作者: kundajelab 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def load_data(infile, chroms, resolutions):
    starts = infile['starts'][...]
    chromosomes = infile['chromosomes'][...]
    data = {}
    for res in resolutions:
        data[res] = {}
        for i, chrom in enumerate(chromosomes):
            if chrom not in chroms:
                continue
            start = (starts[i] / res) * res
            dist = infile['dist.%s.%i' % (chrom, res)][...]
            valid_rows = infile['valid.%s.%i' % (chrom, res)][...]
            corr = infile['corr.%s.%i' % (chrom, res)][...]
            valid = numpy.zeros(corr.shape, dtype=numpy.bool)
            N, M = corr.shape
            valid = numpy.zeros((N, M), dtype=numpy.int32)
            for i in range(min(N - 1, M)):
                P = N - i - 1
                valid[:P, i] = valid_rows[(i + 1):] * valid_rows[:P]
            temp = corr * dist
            valid[numpy.where(numpy.abs(temp) == numpy.inf)] = False
            data[res][chrom] = [start, temp, valid]
    return data
simulations_from_real_data.py 文件源码 项目:genomedisco 作者: kundajelab 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def shift_dataset(m,boundarynoise):
    if boundarynoise==0:
        return m
    nonzero_rows=np.where(m.any(axis=1))[0]
    small_m=copy.deepcopy(m)
    small_m=small_m[nonzero_rows,:]
    small_m=small_m[:,nonzero_rows]
    print small_m
    print 'roll'
    small_m=np.roll(small_m,boundarynoise,axis=0)
    print small_m
    print 'roll2'
    small_m=np.roll(small_m,boundarynoise,axis=1)
    print small_m
    outm=np.zeros(m.shape)
    for i_idx in range(len(nonzero_rows)):
        i=nonzero_rows[i_idx]
        for j_idx in range(i_idx,len(nonzero_rows)):
            j=nonzero_rows[j_idx]
            outm[i,j]=small_m[i_idx,j_idx]
            outm[j,i]=outm[i,j]
    return outm
proposal_target_layer.py 文件源码 项目:HandDetection 作者: YunqiuXu 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _get_bbox_regression_labels(bbox_target_data, num_classes):
  """Bounding-box regression targets (bbox_target_data) are stored in a
  compact form N x (class, tx, ty, tw, th)

  This function expands those targets into the 4-of-4*K representation used
  by the network (i.e. only one class has non-zero targets).

  Returns:
      bbox_target (ndarray): N x 4K blob of regression targets
      bbox_inside_weights (ndarray): N x 4K blob of loss weights
  """

  clss = bbox_target_data[:, 0]
  bbox_targets = np.zeros((clss.size, 4 * num_classes), dtype=np.float32)
  bbox_inside_weights = np.zeros(bbox_targets.shape, dtype=np.float32)
  inds = np.where(clss > 0)[0]
  for ind in inds:
    cls = clss[ind]
    start = int(4 * cls)
    end = start + 4
    bbox_targets[ind, start:end] = bbox_target_data[ind, 1:]
    bbox_inside_weights[ind, start:end] = cfg.TRAIN.BBOX_INSIDE_WEIGHTS
  return bbox_targets, bbox_inside_weights
train_val.py 文件源码 项目:HandDetection 作者: YunqiuXu 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def remove_snapshot(self, np_paths, ss_paths):
    to_remove = len(np_paths) - cfg.TRAIN.SNAPSHOT_KEPT
    for c in range(to_remove):
      nfile = np_paths[0]
      os.remove(str(nfile))
      np_paths.remove(nfile)

    to_remove = len(ss_paths) - cfg.TRAIN.SNAPSHOT_KEPT
    for c in range(to_remove):
      sfile = ss_paths[0]
      # To make the code compatible to earlier versions of Tensorflow,
      # where the naming tradition for checkpoints are different
      if os.path.exists(str(sfile)):
        os.remove(str(sfile))
      else:
        os.remove(str(sfile + '.data-00000-of-00001'))
        os.remove(str(sfile + '.index'))
      sfile_meta = sfile + '.meta'
      os.remove(str(sfile_meta))
      ss_paths.remove(sfile)
train_val.py 文件源码 项目:HandDetection 作者: YunqiuXu 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def filter_roidb(roidb):
  """Remove roidb entries that have no usable RoIs."""

  def is_valid(entry):
    # Valid images have:
    #   (1) At least one foreground RoI OR
    #   (2) At least one background RoI
    overlaps = entry['max_overlaps']
    # find boxes with sufficient overlap
    fg_inds = np.where(overlaps >= cfg.TRAIN.FG_THRESH)[0]
    # Select background RoIs as those within [BG_THRESH_LO, BG_THRESH_HI)
    bg_inds = np.where((overlaps < cfg.TRAIN.BG_THRESH_HI) &
                       (overlaps >= cfg.TRAIN.BG_THRESH_LO))[0]
    # image is only valid if such boxes exist
    valid = len(fg_inds) > 0 or len(bg_inds) > 0
    return valid

  num = len(roidb)
  filtered_roidb = [entry for entry in roidb if is_valid(entry)]
  num_after = len(filtered_roidb)
  print('Filtered {} roidb entries: {} -> {}'.format(num - num_after,
                                                     num, num_after))
  return filtered_roidb
recognition_utils.py 文件源码 项目:pybot 作者: spillai 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def recall_from_IoU(IoU, samples=500): 
    """
    plot recall_vs_IoU_threshold
    """

    if not (isinstance(IoU, list) or IoU.ndim == 1):
        raise ValueError('IoU needs to be a list or 1-D')
    iou = np.float32(IoU)

    # Plot intersection over union
    IoU_thresholds = np.linspace(0.0, 1.0, samples)
    recall = np.zeros_like(IoU_thresholds)
    for idx, IoU_th in enumerate(IoU_thresholds):
        tp, relevant = 0, 0
        inds, = np.where(iou >= IoU_th)
        recall[idx] = len(inds) * 1.0 / len(IoU)

    return recall, IoU_thresholds 

# =====================================================================
# Generic utility functions for object recognition
# ---------------------------------------------------------------------
recognition_utils.py 文件源码 项目:pybot 作者: spillai 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def mine(self, im, gt_bboxes): 
        """
        Propose bounding boxes using proposer, and
        augment non-overlapping boxes with IoU < 0.1
        to the ground truth set.
        (up to a maximum of num_proposals)
        """
        bboxes = self.proposer_.process(im)

        if len(gt_bboxes): 
            # Determine bboxes that have low IoU with ground truth
            # iou = [N x GT]
            iou = brute_force_match(bboxes, gt_bboxes, 
                                    match_func=lambda x,y: intersection_over_union(x,y))
            # print('Detected {}, {}, {}'.format(iou.shape, len(gt_bboxes), len(bboxes))) # , np.max(iou, axis=1)
            overlap_inds, = np.where(np.max(iou, axis=1) < 0.1)
            bboxes = bboxes[overlap_inds]
            # print('Remaining non-overlapping {}'.format(len(bboxes)))

        bboxes = bboxes[:self.num_proposals_]
        targets = self.generate_targets(len(bboxes))
        return bboxes, targets
data_preparation.py 文件源码 项目:sea-lion-counter 作者: rdinse 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def compHistDistance(h1, h2):
  def normalize(h):    
    if np.sum(h) == 0: 
        return h
    else:
        return h / np.sum(h)

  def smoothstep(x, x_min=0., x_max=1., k=2.):
      m = 1. / (x_max - x_min)
      b = - m * x_min
      x = m * x + b
      return betainc(k, k, np.clip(x, 0., 1.))

  def fn(X, Y, k):
    return 4. * (1. - smoothstep(Y, 0, (1 - Y) * X + Y + .1)) \
      * np.sqrt(2 * X) * smoothstep(X, 0., 1. / k, 2) \
             + 2. * smoothstep(Y, 0, (1 - Y) * X + Y + .1) \
             * (1. - 2. * np.sqrt(2 * X) * smoothstep(X, 0., 1. / k, 2) - 0.5)

  h1 = normalize(h1)
  h2 = normalize(h2)

  return max(0, np.sum(fn(h2, h1, len(h1))))
  # return np.sum(np.where(h2 != 0, h2 * np.log10(h2 / (h1 + 1e-10)), 0))  # KL divergence
spatial_image_analysis.py 文件源码 项目:tissue_analysis 作者: VirtualPlants 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def cells_walls_coords(self):
        """Return coordinates of the voxels defining a cell wall.

        This function thus returns any voxel in contact with one of different label.

        Args:
          image (SpatialImage) - Segmented image (tissu)

        Returns:
          x,y,z (list) - coordinates of the voxels defining the cell boundaries (walls).
        """
        if self.is3D():
            image = hollow_out_cells(self.image, self.background, verbose=True)
        else:
            image = copy.copy(self.image)
            image[np.where(image==self.background)] = 0

        if self.is3D():
            x,y,z = np.where(image!=0)
            return list(x), list(y), list(z)
        else:
            x,y = np.where(image!=0)
            return list(x), list(y)
spatial_image_analysis.py 文件源码 项目:tissue_analysis 作者: VirtualPlants 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def fuse_labels_in_image(self, labels, verbose = True):
        """ Modify the image so the given labels are fused (to the min value)."""
        assert isinstance(labels, list) and len(labels) >= 2
        assert self.background() not in labels

        min_lab = min(labels)
        labels.remove(min_lab)
        N=len(labels); percent = 0
        if verbose: print "Fusing the following {} labels: {} to value '{}'.".format(N, labels, min_lab)
        for n, label in enumerate(labels):
            if verbose and n*100/float(N) >= percent: print "{}%...".format(percent),; percent += 5
            if verbose and n+1==N: print "100%"
            try:
                bbox = self.boundingbox(label)
                xyz = np.where( (self.image[bbox]) == label )
                self.image[tuple((xyz[0]+bbox[0].start, xyz[1]+bbox[1].start, xyz[2]+bbox[2].start))]=min_lab
            except:
                print "No boundingbox found for cell id #{}, skipping...".format(label)
                continue
        print "Done!"
        return None
data_loader_test.py 文件源码 项目:segmentation_DLMI 作者: imatge-upc 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def load_ROI_mask(self):

        proxy = nib.load(self.FLAIR_FILE)
        image_array = np.asarray(proxy.dataobj)

        mask = np.ones_like(image_array)
        mask[np.where(image_array < 90)] = 0

        # img = nib.Nifti1Image(mask, proxy.affine)
        # nib.save(img, join(modalities_path,'mask.nii.gz'))

        struct_element_size = (20, 20, 20)
        mask_augmented = np.pad(mask, [(21, 21), (21, 21), (21, 21)], 'constant', constant_values=(0, 0))
        mask_augmented = binary_closing(mask_augmented, structure=np.ones(struct_element_size, dtype=bool)).astype(
            np.int)

        return mask_augmented[21:-21, 21:-21, 21:-21].astype('bool')
spikedetection.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __detect_spike_peak(self,ang_data,Thr,peak_before,peak_after):
        if Thr < 0:
            dd_0 = np.where(ang_data<Thr)[0]
        elif Thr >=0:
            dd_0 = np.where(ang_data>=Thr)[0]
        dd_1 = np.diff(dd_0,n=1)
        dd_2 = np.where(dd_1 > 1)[0]+1
        dd_3 = np.split(dd_0,dd_2)
        spike_peak = []
        if Thr < 0:
            for ite in dd_3:
                if ite.size:
                    potent_peak = ite[ang_data[ite].argmin()]
                    if (potent_peak + peak_after <= ang_data.shape[0]) and (potent_peak - peak_before >= 0):
                        spike_peak.append(potent_peak)
        elif Thr >=0:
            for ite in dd_3:
                if ite.size:
                    potent_peak = ite[ang_data[ite].argmax()]
                    if (potent_peak + peak_after <= ang_data.shape[0]) and (potent_peak - peak_before >= 0):
                        spike_peak.append(potent_peak)
        return np.array(spike_peak)
test_nestio.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_values(self):
        """
        Tests if the function returns the correct values.
        """

        filename = get_test_file_full_path(
                ioclass=NestIO,
                filename='0gid-1time-2gex-3Vm-1261-0.dat',
                directory=self.local_test_dir, clean=False)

        id_to_test = 1
        r = NestIO(filenames=filename)
        seg = r.read_segment(gid_list=[id_to_test],
                             t_stop=1000. * pq.ms,
                             sampling_period=pq.ms, lazy=False,
                             id_column_dat=0, time_column_dat=1,
                             value_columns_dat=2, value_types='V_m')

        dat = np.loadtxt(filename)
        target_data = dat[:, 2][np.where(dat[:, 0] == id_to_test)]
        target_data = target_data[:, None]
        st = seg.analogsignals[0]
        np.testing.assert_array_equal(st.magnitude, target_data)
test_nestio.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def test_values(self):
        """
        Tests if the routine loads the correct numbers from the file.
        """
        id_to_test = 1
        filename = get_test_file_full_path(
                ioclass=NestIO,
                filename='0gid-1time-1256-0.gdf',
                directory=self.local_test_dir, clean=False)
        r = NestIO(filenames=filename)
        seg = r.read_segment(gid_list=[id_to_test],
                             t_start=400. * pq.ms,
                             t_stop=500. * pq.ms, lazy=False,
                             id_column_gdf=0, time_column_gdf=1)

        dat = np.loadtxt(filename)
        target_data = dat[:, 1][np.where(dat[:, 0] == id_to_test)]

        st = seg.spiketrains[0]
        np.testing.assert_array_equal(st.magnitude, target_data)
test_nestio.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def test_correct_condition_selection(self):
        """
        Test if combination of condition function and condition_column works
        properly.
        """
        condition_column = 0
        condition_function = lambda x: x > 10
        result = self.testIO.get_columns(condition=condition_function,
                                         condition_column=0)
        selected_ids = np.where(condition_function(self.testIO.data[:,
                                                   condition_column]))[0]
        expected = self.testIO.data[selected_ids, :]

        np.testing.assert_array_equal(result, expected)

        assert all(condition_function(result[:, condition_column]))
elphyio.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def get_event(self, ep, ch, marked_ks):
        """
        Return a :class:`ElphyEvent` which is a
        descriptor of the specified event channel.
        """
        assert ep in range(1, self.n_episodes + 1)
        assert ch in range(1, self.n_channels + 1)

        # find the event channel number
        evt_channel = np.where(marked_ks == -1)[0][0]
        assert evt_channel in range(1, self.n_events(ep) + 1)

        block = self.episode_block(ep)
        ep_blocks = self.get_blocks_stored_in_episode(ep)
        evt_blocks = [k for k in ep_blocks if k.identifier == 'REVT']
        n_events = np.sum([k.n_events[evt_channel - 1] for k in evt_blocks], dtype=int)
        x_unit = block.ep_block.x_unit

        return ElphyEvent(self, ep, evt_channel, x_unit, n_events, ch_number=ch)
spikedetection.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __detect_spike_peak(self,ang_data,Thr,peak_before,peak_after):
        if Thr < 0:
            dd_0 = np.where(ang_data<Thr)[0]
        elif Thr >=0:
            dd_0 = np.where(ang_data>=Thr)[0]
        dd_1 = np.diff(dd_0,n=1)
        dd_2 = np.where(dd_1 > 1)[0]+1
        dd_3 = np.split(dd_0,dd_2)
        spike_peak = []
        if Thr < 0:
            for ite in dd_3:
                if ite.size:
                    potent_peak = ite[ang_data[ite].argmin()]
                    if (potent_peak + peak_after <= ang_data.shape[0]) and (potent_peak - peak_before >= 0):
                        spike_peak.append(potent_peak)
        elif Thr >=0:
            for ite in dd_3:
                if ite.size:
                    potent_peak = ite[ang_data[ite].argmax()]
                    if (potent_peak + peak_after <= ang_data.shape[0]) and (potent_peak - peak_before >= 0):
                        spike_peak.append(potent_peak)
        return np.array(spike_peak)
test_nestio.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_values(self):
        """
        Tests if the function returns the correct values.
        """

        filename = get_test_file_full_path(
                ioclass=NestIO,
                filename='0gid-1time-2gex-3Vm-1261-0.dat',
                directory=self.local_test_dir, clean=False)

        id_to_test = 1
        r = NestIO(filenames=filename)
        seg = r.read_segment(gid_list=[id_to_test],
                             t_stop=1000. * pq.ms,
                             sampling_period=pq.ms, lazy=False,
                             id_column_dat=0, time_column_dat=1,
                             value_columns_dat=2, value_types='V_m')

        dat = np.loadtxt(filename)
        target_data = dat[:, 2][np.where(dat[:, 0] == id_to_test)]
        target_data = target_data[:, None]
        st = seg.analogsignals[0]
        np.testing.assert_array_equal(st.magnitude, target_data)
test_nestio.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_values(self):
        """
        Tests if the routine loads the correct numbers from the file.
        """
        id_to_test = 1
        filename = get_test_file_full_path(
                ioclass=NestIO,
                filename='0gid-1time-1256-0.gdf',
                directory=self.local_test_dir, clean=False)
        r = NestIO(filenames=filename)
        seg = r.read_segment(gid_list=[id_to_test],
                             t_start=400. * pq.ms,
                             t_stop=500. * pq.ms, lazy=False,
                             id_column_gdf=0, time_column_gdf=1)

        dat = np.loadtxt(filename)
        target_data = dat[:, 1][np.where(dat[:, 0] == id_to_test)]

        st = seg.spiketrains[0]
        np.testing.assert_array_equal(st.magnitude, target_data)
test_nestio.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def test_correct_condition_selection(self):
        """
        Test if combination of condition function and condition_column works
        properly.
        """
        condition_column = 0
        condition_function = lambda x: x > 10
        result = self.testIO.get_columns(condition=condition_function,
                                         condition_column=0)
        selected_ids = np.where(condition_function(self.testIO.data[:,
                                                   condition_column]))[0]
        expected = self.testIO.data[selected_ids, :]

        np.testing.assert_array_equal(result, expected)

        assert all(condition_function(result[:, condition_column]))
elphyio.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_event(self, ep, ch, marked_ks):
        """
        Return a :class:`ElphyEvent` which is a
        descriptor of the specified event channel.
        """
        assert ep in range(1, self.n_episodes + 1)
        assert ch in range(1, self.n_channels + 1)

        # find the event channel number
        evt_channel = np.where(marked_ks == -1)[0][0]
        assert evt_channel in range(1, self.n_events(ep) + 1)

        block = self.episode_block(ep)
        ep_blocks = self.get_blocks_stored_in_episode(ep)
        evt_blocks = [k for k in ep_blocks if k.identifier == 'REVT']
        n_events = np.sum([k.n_events[evt_channel - 1] for k in evt_blocks], dtype=int)
        x_unit = block.ep_block.x_unit

        return ElphyEvent(self, ep, evt_channel, x_unit, n_events, ch_number=ch)
image_color_augment.py 文件源码 项目:Tensormodels 作者: asheshjain399 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def random_hue(img, label, max_delta=10):
    """
    Rotates the hue channel
    Args:
        img: input image in float32
        max_delta: Max number of degrees to rotate the hue channel
    """
    # Rotates the hue channel by delta degrees
    delta = -max_delta + 2.0 * max_delta * rand.rand()
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    hchannel = hsv[:, :, 0]
    hchannel = delta + hchannel

    # hue should always be within [0,360]
    idx = np.where(hchannel > 360)
    hchannel[idx] = hchannel[idx] - 360
    idx = np.where(hchannel < 0)
    hchannel[idx] = hchannel[idx] + 360

    hsv[:, :, 0] = hchannel
    return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR), label
keras_utils.py 文件源码 项目:AutoSleepScorerDev 作者: skjerns 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def reset(self):
        """ Resets the state of the generator"""
        self.step = 0
        Y = np.argmax(self.Y,1)
        labels = np.unique(Y)
        idx = []
        smallest = len(Y)
        for i,label in enumerate(labels):
            where = np.where(Y==label)[0]
            if smallest > len(where): 
                self.slabel = i
                smallest = len(where)
            idx.append(where)
        self.idx = idx
        self.labels = labels
        self.n_per_class = int(self.batch_size // len(labels))
        self.n_batches = int(np.ceil((smallest//self.n_per_class)))+1
        self.update_probabilities()
hsbm_tm.py 文件源码 项目:hSBM_Topicmodel 作者: martingerlach 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self,args):
        '''
        Initialize hsbm-instance
        - create a folder where to save results: self.args.output
        - make a bipartite word-doc graph from the corpus. save as self.graph
        - do the hsbm inference. save the state as self.inference
        '''
        self.args = args
        self.out_path = self.args.output

        if not os.path.exists(self.out_path):
            os.makedirs(self.out_path)

        ## get the graph-object
        self.graph = self.make_graph()
        ## do the hsbm-inference
        self.state = self.inference(self.graph)
fill_db.py 文件源码 项目:corporadb 作者: nlesc-sherlock 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def check_dataset(self):
    '''
    check if dataset is already in database
    if found set self.dataset_id to the entry in the database
    return boolean
    '''
    self.cursor.execute('select id as rowid, name from dataset')
    citems = self.cursor.fetchall()
    names = [citem['name'] for citem in citems]  # get all names
    if names:
      try:
        idx = numpy.where(numpy.array(names)==self.datasetname)[0][0]
        self.dataset_id = citems[idx]['rowid']
        return True
      except IndexError:
        return False
    else:
      return False
lang2vec.py 文件源码 项目:lang-reps 作者: chaitanyamalaviya 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def get_language_index(lang_code, feature_database):
    return np.where(feature_database["langs"] == lang_code)[0][0]


问题


面经


文章

微信
公众号

扫码关注公众号