python类uint8()的实例源码

brainwaresrcio.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def __read_spike_fixed(self, numpts=40):
        """
        Read a spike with a fixed waveform length (40 time bins)

        -------------------------------------------
        Returns the time, waveform and trig2 value.

        The returned objects must be converted to a SpikeTrain then
        added to the Block.

        ID: 29079
        """

        # float32 -- spike time stamp in ms since start of SpikeTrain
        time = np.fromfile(self._fsrc, dtype=np.float32, count=1)

        # int8 * 40 -- spike shape -- use numpts for spike_var
        waveform = np.fromfile(self._fsrc, dtype=np.int8,
                               count=numpts).reshape(1, 1, numpts)

        # uint8 -- point of return to noise
        trig2 = np.fromfile(self._fsrc, dtype=np.uint8, count=1)

        return time, waveform, trig2
brainwaresrcio.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def __read_spike_var(self):
        """
        Read a spike with a variable waveform length

        -------------------------------------------
        Returns the time, waveform and trig2 value.

        The returned objects must be converted to a SpikeTrain then
        added to the Block.

        ID: 29115
        """

        # uint8 -- number of points in spike shape
        numpts = np.fromfile(self._fsrc, dtype=np.uint8, count=1)[0]

        # spike_fixed is the same as spike_var if you don't read the numpts
        # byte and set numpts = 40
        return self.__read_spike_fixed(numpts)
brainwaresrcio.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __read_spike_fixed(self, numpts=40):
        """
        Read a spike with a fixed waveform length (40 time bins)

        -------------------------------------------
        Returns the time, waveform and trig2 value.

        The returned objects must be converted to a SpikeTrain then
        added to the Block.

        ID: 29079
        """

        # float32 -- spike time stamp in ms since start of SpikeTrain
        time = np.fromfile(self._fsrc, dtype=np.float32, count=1)

        # int8 * 40 -- spike shape -- use numpts for spike_var
        waveform = np.fromfile(self._fsrc, dtype=np.int8,
                               count=numpts).reshape(1, 1, numpts)

        # uint8 -- point of return to noise
        trig2 = np.fromfile(self._fsrc, dtype=np.uint8, count=1)

        return time, waveform, trig2
brainwaresrcio.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def __read_spike_var(self):
        """
        Read a spike with a variable waveform length

        -------------------------------------------
        Returns the time, waveform and trig2 value.

        The returned objects must be converted to a SpikeTrain then
        added to the Block.

        ID: 29115
        """

        # uint8 -- number of points in spike shape
        numpts = np.fromfile(self._fsrc, dtype=np.uint8, count=1)[0]

        # spike_fixed is the same as spike_var if you don't read the numpts
        # byte and set numpts = 40
        return self.__read_spike_fixed(numpts)
pixelcopy_test.py 文件源码 项目:Projects 作者: it2school 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def __init__(self, *args, **kwds):
        import numpy

        self.dst_types = [numpy.uint8, numpy.uint16, numpy.uint32]
        try:
            self.dst_types.append(numpy.uint64)
        except AttributeError:
            pass
        pygame.display.init()
        try:
            unittest.TestCase.__init__(self, *args, **kwds)
            self.sources = [self._make_src_surface(8),
                            self._make_src_surface(16),
                            self._make_src_surface(16, srcalpha=True),
                            self._make_src_surface(24),
                            self._make_src_surface(32),
                            self._make_src_surface(32, srcalpha=True)]
        finally:
            pygame.display.quit()
_numpysurfarray.py 文件源码 项目:Projects 作者: it2school 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def array2d(surface):
    """pygame.numpyarray.array2d(Surface): return array

    copy pixels into a 2d array

    Copy the pixels from a Surface into a 2D array. The bit depth of the
    surface will control the size of the integer values, and will work
    for any type of pixel format.

    This function will temporarily lock the Surface as pixels are copied
    (see the Surface.lock - lock the Surface memory for pixel access
    method).
    """
    bpp = surface.get_bytesize()
    try:
        dtype = (numpy.uint8, numpy.uint16, numpy.int32, numpy.int32)[bpp - 1]
    except IndexError:
        raise ValueError("unsupported bit depth %i for 2D array" % (bpp * 8,))
    size = surface.get_size()
    array = numpy.empty(size, dtype)
    surface_to_array(array, surface)
    return array
_numpysurfarray.py 文件源码 项目:Projects 作者: it2school 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def array3d(surface):
    """pygame.numpyarray.array3d(Surface): return array

    copy pixels into a 3d array

    Copy the pixels from a Surface into a 3D array. The bit depth of the
    surface will control the size of the integer values, and will work
    for any type of pixel format.

    This function will temporarily lock the Surface as pixels are copied
    (see the Surface.lock - lock the Surface memory for pixel access
    method).
    """
    w, h = surface.get_size()
    array = numpy.empty((w, h, 3), numpy.uint8)
    surface_to_array(array, surface)
    return array
_numpysurfarray.py 文件源码 项目:Projects 作者: it2school 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def array_red(surface):
    """pygame.numpyarray.array_red(Surface): return array

    copy pixel red into a 2d array

    Copy the pixel red values from a Surface into a 2D array. This will work
    for any type of Surface format.

    This function will temporarily lock the Surface as pixels are copied
    (see the Surface.lock - lock the Surface memory for pixel access
    method).
    """
    size = surface.get_size()
    array = numpy.empty(size, numpy.uint8)
    surface_to_array(array, surface, 'R')
    return array
_numpysurfarray.py 文件源码 项目:Projects 作者: it2school 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def array_green(surface):
    """pygame.numpyarray.array_green(Surface): return array

    copy pixel green into a 2d array

    Copy the pixel green values from a Surface into a 2D array. This will work
    for any type of Surface format.

    This function will temporarily lock the Surface as pixels are copied
    (see the Surface.lock - lock the Surface memory for pixel access
    method).
    """
    size = surface.get_size()
    array = numpy.empty(size, numpy.uint8)
    surface_to_array(array, surface, 'G')
    return array
_numpysurfarray.py 文件源码 项目:Projects 作者: it2school 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def array_blue(surface):
    """pygame.numpyarray.array_blue(Surface): return array

    copy pixel blue into a 2d array

    Copy the pixel blue values from a Surface into a 2D array. This will work
    for any type of Surface format.

    This function will temporarily lock the Surface as pixels are copied
    (see the Surface.lock - lock the Surface memory for pixel access
    method).
    """
    size = surface.get_size()
    array = numpy.empty(size, numpy.uint8)
    surface_to_array(array, surface, 'B')
    return array
_numpysurfarray.py 文件源码 项目:Projects 作者: it2school 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def array_colorkey(surface):
    """pygame.numpyarray.array_colorkey(Surface): return array

    copy the colorkey values into a 2d array

    Create a new array with the colorkey transparency value from each
    pixel. If the pixel matches the colorkey it will be fully
    tranparent; otherwise it will be fully opaque.

    This will work on any type of Surface format. If the image has no
    colorkey a solid opaque array will be returned.

    This function will temporarily lock the Surface as pixels are
    copied.
    """
    size = surface.get_size()
    array = numpy.empty(size, numpy.uint8)
    surface_to_array(array, surface, 'C')
    return array
BaseImageData.py 文件源码 项目:kaggle-review 作者: daxiongshu 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def write_tfrecord(self, img_list, label_list, record_path):
        # write a single tfrecord
        if os.path.exists(record_path):
            print ("%s exists!"%record_path)
            return

        self._check_list()
        print ("write %s"%record_path)
        self._write_info()

        writer = tf.python_io.TFRecordWriter(record_path)
        c = 0
        for imgname,label in zip(img_list,label_list):

            img = Image.open(imgname).resize((self.flags.width, self.flags.height))
            data = np.array(img).astype(np.uint8)
            img,data = self._check_color(img,data)

            example = self._get_example(data,label)
            writer.write(example.SerializeToString())
            c+=1
            if c%LOG_EVERY == 0:
                print ("%d images written to tfrecord"%c)
        writer.close()
        print("writing %s done"%record_path)
recipe-577591.py 文件源码 项目:code 作者: ActiveState 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def array2PIL(arr, size):
    mode = 'RGBA'
    arr = arr.reshape(arr.shape[0]*arr.shape[1], arr.shape[2])
    if len(arr[0]) == 3:
        arr = numpy.c_[arr, 255*numpy.ones((len(arr),1), numpy.uint8)]
    return Image.frombuffer(mode, size, arr.tostring(), 'raw', mode, 0, 1)
utils.py 文件源码 项目:pyku 作者: dubvulture 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def ONES(n):
    return np.ones((n, n), np.uint8)
TensorFlowInterface.py 文件源码 项目:IntroToDeepLearning 作者: robb-brown 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def conv2d(x,W,strides=[1,1,1,1],name=None):
    # return an op that convolves x with W
    strides = np.array(strides)
    if strides.size == 1:
        strides = np.array([1,strides,strides,1])
    elif strides.size == 2:
        strides = np.array([1,strides[0],strides[1],1])
    if np.any(strides < 1):
        strides = np.around(1./strides).astype(np.uint8)
        return tf.nn.conv2d_transpose(x,W,strides=strides.tolist(),padding='SAME',name=name)
    else:
        return tf.nn.conv2d(x,W,strides=strides.tolist(),padding='SAME',name=name)
TensorFlowInterface.py 文件源码 项目:IntroToDeepLearning 作者: robb-brown 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def conv3d(x,W,strides=1,name=None):
    # return an op that convolves x with W
    strides = np.array(strides)
    if strides.size == 1:
        strides = np.array([1,strides,strides,strides[0],1])
    elif strides.size == 3:
        strides = np.array([1,strides[0],strides[1],strides[2],1])
    if np.any(strides < 1):
        strides = np.around(1./strides).astype(np.uint8)
        return tf.nn.conv3d_transpose(x,W,strides=strides.tolist(),padding='SAME',name=name)
    else:
        return tf.nn.conv3d(x,W,strides=strides.tolist(),padding='SAME',name=name)
input_data.py 文件源码 项目:IntroToDeepLearning 作者: robb-brown 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def extract_labels(filename, one_hot=False):
  """Extract the labels into a 1D uint8 numpy array [index]."""
  print('Extracting', filename)
  with gzip.open(filename) as bytestream:
    magic = _read32(bytestream)
    if magic != 2049:
      raise ValueError(
          'Invalid magic number %d in MNIST label file: %s' %
          (magic, filename))
    num_items = _read32(bytestream)
    buf = bytestream.read(num_items)
    labels = numpy.frombuffer(buf, dtype=numpy.uint8)
    if one_hot:
      return dense_to_one_hot(labels)
    return labels
main.py 文件源码 项目:FaceSwap 作者: Aravind-Suresh 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def get_contour_mask(dshape, img_fl):
    mask = np.zeros(dshape)
    hull = cv2.convexHull(img_fl)
    cv2.drawContours(mask, [hull], 0, (1, 1, 1) , -1)
    return np.uint8(mask)

# Orients input_ mask onto tmpl_ face
main.py 文件源码 项目:FaceSwap 作者: Aravind-Suresh 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def orient_faces_wrap(frame, args):
    input = args[0]
    out_ = orient_faces(frame, input)
    if out_ is None:
        return None
    out = np.uint8(out_)
    return out

# A wrapper of mask_on_face for videoize method
main.py 文件源码 项目:FaceSwap 作者: Aravind-Suresh 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def mask_on_face_wrap(frame, args):
    input = args[0]
    mask_shape = args[1]
    out_ = mask_on_face(frame, input, mask_shape)
    if out_ is None:
        return None
    out = np.uint8(out_)
    return out

# A routine to extend single-image proc methods to
# successive frames read from Camera


问题


面经


文章

微信
公众号

扫码关注公众号