python类exp()的实例源码

activations.py 文件源码 项目:NumpyDL 作者: oujago 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def forward(self, input, *args, **kwargs):
        """A sigmoid function is a mathematical function having a 
        characteristic "S"-shaped curve or sigmoid curve. Often, 
        sigmoid function refers to the special case of the logistic 
        function and defined by the formula :math:`\\varphi(x) = \\frac{1}{1 + e^{-x}}`
        (given the input :math:`x`).

        Parameters
        ----------
        input : float32
            The activation (the summed, weighted input of a neuron).

        Returns
        -------
        float32 in [0, 1]
            The output of the sigmoid function applied to the activation.
        """

        self.last_forward = 1.0 / (1.0 + np.exp(-input))
        return self.last_forward
activations.py 文件源码 项目:NumpyDL 作者: oujago 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def forward(self, input):
        """:math:`\\varphi(\\mathbf{x})_j =
        \\frac{e^{\mathbf{x}_j}}{\sum_{k=1}^K e^{\mathbf{x}_k}}`
        where :math:`K` is the total number of neurons in the layer. This
        activation function gets applied row-wise.

        Parameters
        ----------
        x : float32
            The activation (the summed, weighted input of a neuron).

        Returns
        -------
        float32 where the sum of the row is 1 and each single value is in [0, 1]
            The output of the softmax function applied to the activation.
        """
        assert np.ndim(input) == 2
        self.last_forward = input
        x = input - np.max(input, axis=1, keepdims=True)
        exp_x = np.exp(x)
        s = exp_x / np.sum(exp_x, axis=1, keepdims=True)
        return s
studykde.py 文件源码 项目:bayestsa 作者: thalesians 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __call__(self, params):
        print '???', params
        sd1 = params[0]
        sd2 = params[1]
        cor = params[2]

        if sd1 < 0. or sd1 > 10. or sd2 < 0. or sd2 > 10. or cor < -1. or cor > 1.:
            return np.inf

        bandwidth = maths.stats.choleskysqrt2d(sd1, sd2, cor)
        bandwidthdet = la.det(bandwidth)
        bandwidthinv = la.inv(bandwidth)

        diff = sample[self.__iidx] - sample[self.__jidx]
        temp = diff.dot(bandwidthinv.T)
        temp *= temp
        e = np.exp(np.sum(temp, axis=1))
        s = np.sum(e**(-.25) - 4 * e**(-.5))

        cost = self.__n / bandwidthdet + (2. / bandwidthdet) * s
        print '!!!', cost
        return cost / 10000.
lstm_log.py 文件源码 项目:mimic3-benchmarks 作者: YerevaNN 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def step(self, mode):
        if mode == "train" and self.mode == "test":
            raise Exception("Cannot train during test mode")

        if mode == "train":
            theano_fn = self.train_fn
            batch_gen = self.train_batch_gen
        elif mode == "test":
            theano_fn = self.test_fn
            batch_gen = self.test_batch_gen
        else:
            raise Exception("Invalid mode")

        data = next(batch_gen)
        ys = data[-1]
        data = data[:-1]
        ret = theano_fn(*data)

        return {"prediction": np.exp(ret[0]) - 1,
                "answers": ys,
                "current_loss": ret[1],
                "loss_reg": ret[2],
                "loss_mse": ret[1] - ret[2],
                "log": ""}
bayesian_nn.py 文件源码 项目:Stein-Variational-Gradient-Descent 作者: DartML 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def evaluation(self, X_test, y_test):
        # normalization
        X_test = self.normalization(X_test)

        # average over the output
        pred_y_test = np.zeros([self.M, len(y_test)])
        prob = np.zeros([self.M, len(y_test)])

        '''
            Since we have M particles, we use a Bayesian view to calculate rmse and log-likelihood
        '''
        for i in range(self.M):
            w1, b1, w2, b2, loggamma, loglambda = self.unpack_weights(self.theta[i, :])
            pred_y_test[i, :] = self.nn_predict(X_test, w1, b1, w2, b2) * self.std_y_train + self.mean_y_train
            prob[i, :] = np.sqrt(np.exp(loggamma)) /np.sqrt(2*np.pi) * np.exp( -1 * (np.power(pred_y_test[i, :] - y_test, 2) / 2) * np.exp(loggamma) )
        pred = np.mean(pred_y_test, axis=0)

        # evaluation
        svgd_rmse = np.sqrt(np.mean((pred - y_test)**2))
        svgd_ll = np.mean(np.log(np.mean(prob, axis = 0)))

        return (svgd_rmse, svgd_ll)
svgd.py 文件源码 项目:Stein-Variational-Gradient-Descent 作者: DartML 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def svgd_kernel(self, theta, h = -1):
        sq_dist = pdist(theta)
        pairwise_dists = squareform(sq_dist)**2
        if h < 0: # if h < 0, using median trick
            h = np.median(pairwise_dists)  
            h = np.sqrt(0.5 * h / np.log(theta.shape[0]+1))

        # compute the rbf kernel
        Kxy = np.exp( -pairwise_dists / h**2 / 2)

        dxkxy = -np.matmul(Kxy, theta)
        sumkxy = np.sum(Kxy, axis=1)
        for i in range(theta.shape[1]):
            dxkxy[:, i] = dxkxy[:,i] + np.multiply(theta[:,i],sumkxy)
        dxkxy = dxkxy / (h**2)
        return (Kxy, dxkxy)
.pynufft_hsa.py 文件源码 项目:pynufft 作者: jyhmiinlin 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def _linear_phase(self, n_shift):
        """
        Private: Select the center of FOV
        """
        om = self.st['om']
        M = self.st['M']
        final_shifts = tuple(
            numpy.array(n_shift) +
            numpy.array(self.st['Nd']) / 2)

        phase = numpy.exp(
            1.0j *
            numpy.sum(
                om * numpy.tile(
                    final_shifts,
                    (M,1)),
                1))
        # add-up all the linear phasees in all axes,

        self.st['p'] = scipy.sparse.diags(phase, 0).dot(self.st['p0'])
pynufft_gpu.py 文件源码 项目:pynufft 作者: jyhmiinlin 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def nufft_scale1(N, K, alpha, beta, Nmid):
    '''
    calculate image space scaling factor
    '''
#     import types
#     if alpha is types.ComplexType:
    alpha = numpy.real(alpha)
#         print('complex alpha may not work, but I just let it as')

    L = len(alpha) - 1
    if L > 0:
        sn = numpy.zeros((N, 1))
        n = numpy.arange(0, N).reshape((N, 1), order='F')
        i_gam_n_n0 = 1j * (2 * numpy.pi / K) * (n - Nmid) * beta
        for l1 in range(-L, L + 1):
            alf = alpha[abs(l1)]
            if l1 < 0:
                alf = numpy.conj(alf)
            sn = sn + alf * numpy.exp(i_gam_n_n0 * l1)
    else:
        sn = numpy.dot(alpha, numpy.ones((N, 1), dtype=numpy.float32))
    return sn
pynufft_gpu.py 文件源码 项目:pynufft 作者: jyhmiinlin 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def linear_phase(self, n_shift):
        '''
        Select the center of FOV
        '''
        om = self.st['om']
        M = self.st['M']
        final_shifts = tuple(
            numpy.array(n_shift) +
            numpy.array(self.st['Nd']) / 2)

        phase = numpy.exp(
            1.0j *
            numpy.sum(
                om * numpy.tile(
                    final_shifts,
                    (M,1)),
                1))
        # add-up all the linear phasees in all axes,

        self.st['p'] = scipy.sparse.diags(phase, 0).dot(self.st['p0'])
        # multiply the diagonal, linear phase before the gridding matrix
helper.py 文件源码 项目:pynufft 作者: jyhmiinlin 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def nufft_scale1(N, K, alpha, beta, Nmid):
    '''
    Calculate image space scaling factor
    '''
#     import types
#     if alpha is types.ComplexType:
    alpha = numpy.real(alpha)
#         print('complex alpha may not work, but I just let it as')

    L = len(alpha) - 1
    if L > 0:
        sn = numpy.zeros((N, 1))
        n = numpy.arange(0, N).reshape((N, 1), order='F')
        i_gam_n_n0 = 1j * (2 * numpy.pi / K) * (n - Nmid) * beta
        for l1 in range(-L, L + 1):
            alf = alpha[abs(l1)]
            if l1 < 0:
                alf = numpy.conj(alf)
            sn = sn + alf * numpy.exp(i_gam_n_n0 * l1)
    else:
        sn = numpy.dot(alpha, numpy.ones((N, 1)))
    return sn
transform_hsa.py 文件源码 项目:pynufft 作者: jyhmiinlin 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _linear_phase(self, n_shift):
        """
        Private: Select the center of FOV
        """
        om = self.st['om']
        M = self.st['M']
        final_shifts = tuple(
            numpy.array(n_shift) +
            numpy.array(self.st['Nd']) / 2)

        phase = numpy.exp(
            1.0j *
            numpy.sum(
                om * numpy.tile(
                    final_shifts,
                    (M,1)),
                1))
        # add-up all the linear phasees in all axes,

        self.st['p'] = scipy.sparse.diags(phase, 0).dot(self.st['p0'])
math_to_code.py 文件源码 项目:STA141C 作者: clarkfitzg 项目源码 文件源码 阅读 52 收藏 0 点赞 0 评论 0
def f(w, lamb):
    """
    Eq. (2) in problem 2

    Non-vectorized, slow
    """
    total = 0
    nrows = X.shape[0]
    for i in range(nrows):
        current = 1 + np.exp(-y[i] * X[i, ].dot(w))
        total += np.log(current)
    total += (lamb / 2) * w.dot(w)
    return total
math_to_code.py 文件源码 项目:STA141C 作者: clarkfitzg 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def f2(w, lamb):
    """
    Eq. (2) in problem 2

    Vectorized (no explicit loops), fast
    """
    yxTw = y * X.dot(w)
    firstpart = np.log(1 + np.exp(-yxTw))
    total = firstpart.sum()
    total += (lamb / 2) * w.dot(w)
    return total
libscores.py 文件源码 项目:AutoML5 作者: djajetic 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def pac_metric (solution, prediction, task='binary.classification'):
    ''' Probabilistic Accuracy based on log_loss metric. 
    We assume the solution is in {0, 1} and prediction in [0, 1].
    Otherwise, run normalize_array.''' 
    debug_flag=False
    [sample_num, label_num] = solution.shape
    if label_num==1: task='binary.classification'
    eps = 1e-15
    the_log_loss = log_loss(solution, prediction, task)
    # Compute the base log loss (using the prior probabilities)    
    pos_num = 1.* sum(solution) # float conversion!
    frac_pos = pos_num / sample_num # prior proba of positive class
    the_base_log_loss = prior_log_loss(frac_pos, task)
    # Alternative computation of the same thing (slower)    
    # Should always return the same thing except in the multi-label case
    # For which the analytic solution makes more sense
    if debug_flag:
        base_prediction = np.empty(prediction.shape)
        for k in range(sample_num): base_prediction[k,:] = frac_pos
        base_log_loss = log_loss(solution, base_prediction, task)  
        diff = np.array(abs(the_base_log_loss-base_log_loss))
        if len(diff.shape)>0: diff=max(diff)
        if(diff)>1e-10: 
            print('Arrggh {} != {}'.format(the_base_log_loss,base_log_loss))
    # Exponentiate to turn into an accuracy-like score.
    # In the multi-label case, we need to average AFTER taking the exp 
    # because it is an NL operation
    pac = mvmean(np.exp(-the_log_loss)) 
    base_pac = mvmean(np.exp(-the_base_log_loss))
    # Normalize: 0 for random, 1 for perfect    
    score = (pac - base_pac) / sp.maximum(eps, (1 - base_pac))
    return score
util.py 文件源码 项目:lang-reps 作者: chaitanyamalaviya 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def softmax(x):
    e_x = np.exp(x - np.max(x))
    out = e_x / e_x.sum()
    return out
test_domain_exponential_decay.py 文件源码 项目:pyballd 作者: Yurlungur 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def f(r,theta):
    out = np.sin(theta)*r*np.exp(-r/2.)
    out[-1] = 0
    return out
test_domain_exponential_decay.py 文件源码 项目:pyballd 作者: Yurlungur 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def dfdr(r,theta):
    out = np.sin(theta)*(np.exp(-r/2.) - (1./2.)*r*np.exp(-r/2.))
    out[-1] = 0
    return out
test_domain_exponential_decay.py 文件源码 项目:pyballd 作者: Yurlungur 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def dfdrdtheta(r,theta):
    out = np.cos(theta)*(np.exp(-r/2.) - (1./2.)*r*np.exp(-r/2.))
    out[-1] = 0
    return out
tdlm_model.py 文件源码 项目:topically-driven-language-model 作者: jhlau 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def sample(self, probs, temperature):
        if temperature == 0:
            return np.argmax(probs)

        probs = probs.astype(np.float64) #convert to float64 for higher precision
        probs = np.log(probs) / temperature
        probs = np.exp(probs) / math.fsum(np.exp(probs))
        return np.argmax(np.random.multinomial(1, probs, 1))

    #generate a sentence given conv_hidden
env_converter.py 文件源码 项目:drl.pth 作者: seba-1511 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def softmax(x):
    act = np.exp(x - np.max(x))
    return act / act.sum()


问题


面经


文章

微信
公众号

扫码关注公众号