python类mean()的实例源码

discussion.py 文件源码 项目:STA141C 作者: clarkfitzg 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def mse(ypredict, ytrue):
    """
    >>> mse(1.0, 3.0)
    4.0
    """
    diff = ypredict - ytrue
    return np.mean(diff**2)
rouge.py 文件源码 项目:deep-summarization 作者: harpribot 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def compute_score(self, gts, res):
        """
        Computes Rouge-L score given a set of reference and candidate sentences for the dataset
        Invoked by evaluate_captions.py

        :param hypo_for_image: dict : candidate / test sentences with "image name" key and "tokenized sentences" as values
        :param ref_for_image: dict : reference MS-COCO sentences with "image name" key and "tokenized sentences" as values
        :returns: average_score: float (mean ROUGE-L score computed by averaging scores for all the images)
        """
        assert(gts.keys() == res.keys())
        imgIds = gts.keys()

        score = []
        for id in imgIds:
            hypo = res[id]
            ref  = gts[id]

            score.append(self.calc_score(hypo, ref))

            # Sanity check.
            assert(type(hypo) is list)
            assert(len(hypo) == 1)
            assert(type(ref) is list)
            assert(len(ref) > 0)

        average_score = np.mean(np.array(score))
        return average_score, np.array(score)
tdose_utilities.py 文件源码 项目:TDOSE 作者: kasperschmidt 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def analytic_convolution_gaussian(mu1,covar1,mu2,covar2):
    """
    The analytic vconvolution of two Gaussians is simply the sum of the two mean vectors
    and the two convariance matrixes

    --- INPUT ---
    mu1         The mean of the first gaussian
    covar1      The covariance matrix of of the first gaussian
    mu2         The mean of the second gaussian
    covar2      The covariance matrix of of the second gaussian

    """
    muconv    = mu1+mu2
    covarconv = covar1+covar2
    return muconv, covarconv

# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
main.py 文件源码 项目:FaceSwap 作者: Aravind-Suresh 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def smooth_colors(src, dst, src_l):
    blur_amount = BLUR_FRACTION * np.linalg.norm(np.mean(src_l[LEFT_EYE_IDX], axis = 0) - np.mean(src_l[RIGHT_EYE_IDX], axis = 0))
    blur_amount = (int)(blur_amount)

    if blur_amount % 2 == 0:
        blur_amount += 1

    src_blur = cv2.GaussianBlur(src, (blur_amount, blur_amount), 0)
    dst_blur = cv2.GaussianBlur(dst, (blur_amount, blur_amount), 0)

    dst_blur += (128 * ( dst_blur <= 1.0 )).astype(dst_blur.dtype)

    return (np.float64(dst) * np.float64(src_blur)/np.float64(dst_blur))
main.py 文件源码 项目:FaceSwap 作者: Aravind-Suresh 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def get_tm_opp(pts1, pts2):
    # Transformation matrix - ( Translation + Scaling + Rotation )
    # using Procuster analysis
    pts1 = np.float64(pts1)
    pts2 = np.float64(pts2)

    m1 = np.mean(pts1, axis = 0)
    m2 = np.mean(pts2, axis = 0)

    # Removing translation
    pts1 -= m1
    pts2 -= m2

    std1 = np.std(pts1)
    std2 = np.std(pts2)
    std_r = std2/std1

    # Removing scaling
    pts1 /= std1
    pts2 /= std2

    U, S, V = np.linalg.svd(np.transpose(pts1) * pts2)

    # Finding the rotation matrix
    R = np.transpose(U * V)

    return np.vstack([np.hstack((std_r * R,
        np.transpose(m2) - std_r * R * np.transpose(m1))), np.matrix([0.0, 0.0, 1.0])])
nn.py 文件源码 项目:GELUs 作者: hendrycks 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def fit(self, x):
        s = x.shape
        x = x.copy().reshape((s[0],np.prod(s[1:])))
        m = np.mean(x, axis=0)
        x -= m
        sigma = np.dot(x.T,x) / x.shape[0]
        U, S, V = linalg.svd(sigma)
        tmp = np.dot(U, np.diag(1./np.sqrt(S+self.regularization)))
        tmp2 = np.dot(U, np.diag(np.sqrt(S+self.regularization)))
        self.ZCA_mat = th.shared(np.dot(tmp, U.T).astype(th.config.floatX))
        self.inv_ZCA_mat = th.shared(np.dot(tmp2, U.T).astype(th.config.floatX))
        self.mean = th.shared(m.astype(th.config.floatX))
nn.py 文件源码 项目:GELUs 作者: hendrycks 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def apply(self, x):
        s = x.shape
        if isinstance(x, np.ndarray):
            return np.dot(x.reshape((s[0],np.prod(s[1:]))) - self.mean.get_value(), self.ZCA_mat.get_value()).reshape(s)
        elif isinstance(x, T.TensorVariable):
            return T.dot(x.flatten(2) - self.mean.dimshuffle('x',0), self.ZCA_mat).reshape(s)
        else:
            raise NotImplementedError("Whitening only implemented for numpy arrays or Theano TensorVariables")
nn.py 文件源码 项目:GELUs 作者: hendrycks 项目源码 文件源码 阅读 57 收藏 0 点赞 0 评论 0
def invert(self, x):
        s = x.shape
        if isinstance(x, np.ndarray):
            return (np.dot(x.reshape((s[0],np.prod(s[1:]))), self.inv_ZCA_mat.get_value()) + self.mean.get_value()).reshape(s)
        elif isinstance(x, T.TensorVariable):
            return (T.dot(x.flatten(2), self.inv_ZCA_mat) + self.mean.dimshuffle('x',0)).reshape(s)
        else:
            raise NotImplementedError("Whitening only implemented for numpy arrays or Theano TensorVariables")

# T.nnet.relu has some issues with very large inputs, this is more stable
nn.py 文件源码 项目:GELUs 作者: hendrycks 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def softmax_loss(p_true, output_before_softmax):
    output_before_softmax -= T.max(output_before_softmax, axis=1, keepdims=True)
    if p_true.ndim==2:
        return T.mean(T.log(T.sum(T.exp(output_before_softmax),axis=1)) - T.sum(p_true*output_before_softmax, axis=1))
    else:
        return T.mean(T.log(T.sum(T.exp(output_before_softmax),axis=1)) - output_before_softmax[T.arange(p_true.shape[0]),p_true])
nn.py 文件源码 项目:GELUs 作者: hendrycks 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def get_output_for(self, input, **kwargs):
        return T.mean(input, axis=(2,3))
tdlm_test.py 文件源码 项目:topically-driven-language-model 作者: jhlau 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def run_epoch_doc(docs, labels, tags, tm, pad_id, cf):
    batches = int(math.ceil(float(len(docs))/cf.batch_size))
    accs = []
    for b in xrange(batches):
        d, y, m, t, num_docs = get_batch_doc(docs, labels, tags, b, cf.doc_len, cf.tag_len, cf.batch_size, pad_id)
        prob = sess.run(tm.sup_probs, {tm.doc:d, tm.label:y, tm.sup_mask: m, tm.tag: t})
        pred = np.argmax(prob, axis=1)
        accs.extend(pred[:num_docs] == y[:num_docs])

    print "\ntest classification accuracy = %.3f" % np.mean(accs)
util.py 文件源码 项目:topically-driven-language-model 作者: jhlau 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def print_corpus_stats(name, sents, docs, stats):
    print name + ":"
    print "\tno. of docs =", len(docs[0])
    if len(sents[0]) > 0:
        print "\ttopic model no. of sequences =", len(sents[0])
        print "\ttopic model no. of tokens =", sum([ len(item[2])-1 for item in sents[0] ])
        print "\toriginal doc mean len =", stats[3]
        print "\toriginal doc max len =", stats[4]
        print "\toriginal doc min len =", stats[5]
    if len(sents[1]) > 0:
        print "\tlanguage model no. of sequences =", len(sents[1])
        print "\tlanguage model no. of tokens =", sum([ len(item[2])-1 for item in sents[1] ])
        print "\toriginal sent mean len =", stats[0]
        print "\toriginal sent max len =", stats[1]
        print "\toriginal sent min len =", stats[2]
regForest.py 文件源码 项目:pylspm 作者: lseman 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def MSE(self, responses):
        mean = np.mean(responses, axis=0)
        return np.mean((responses - mean) ** 2)
regForest.py 文件源码 项目:pylspm 作者: lseman 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def make_leaf(self, responses):
        self.leaf = np.mean(responses, axis=0)
regForest.py 文件源码 项目:pylspm 作者: lseman 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def predict(self, point):
        response = []
        for i in range(self.ntrees):
            response.append(self.trees[i].predict(point))
        return np.mean(response, axis=0)
pylspm.py 文件源码 项目:pylspm 作者: lseman 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def normaliza(self, X):
        correction = np.sqrt((len(X) - 1) / len(X))  # std factor corretion
        mean_ = np.mean(X, 0)
        scale_ = np.std(X, 0)
        X = X - mean_
        X = X / (scale_ * correction)
        return X
pylspm.py 文件源码 项目:pylspm 作者: lseman 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def gof(self):
        r2mean = np.mean(self.r2.T[self.endoexo()[0]].values)
        AVEmean = self.AVE().copy()

        totalblock = 0
        for i in range(self.lenlatent):
            block = self.data_[self.Variables['measurement']
                               [self.Variables['latent'] == self.latent[i]]]
            block = len(block.columns.values)
            totalblock += block
            AVEmean[self.latent[i]] = AVEmean[self.latent[i]] * block

        AVEmean = np.sum(AVEmean) / totalblock
        return np.sqrt(AVEmean * r2mean)
pylspm.py 文件源码 项目:pylspm 作者: lseman 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def srmr(self):
        srmr = (self.empirical() - self.implied())
        srmr = np.sqrt(((srmr.values) ** 2).mean())
        return srmr
pylspm.py 文件源码 项目:pylspm 作者: lseman 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def dataInfo(self):
        sd_ = np.std(self.data, 0)
        mean_ = np.mean(self.data, 0)
        skew = scipy.stats.skew(self.data)
        kurtosis = scipy.stats.kurtosis(self.data)
        w = [scipy.stats.shapiro(self.data.ix[:, i])[0]
             for i in range(len(self.data.columns))]

        return [mean_, sd_, skew, kurtosis, w]
pylspm.py 文件源码 项目:pylspm 作者: lseman 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def htmt(self):

        htmt_ = pd.DataFrame(pd.DataFrame.corr(self.data_),
                             index=self.manifests, columns=self.manifests)

        mean = []
        allBlocks = []
        for i in range(self.lenlatent):
            block_ = self.Variables['measurement'][
                self.Variables['latent'] == self.latent[i]]
            allBlocks.append(list(block_.values))
            block = htmt_.ix[block_, block_]
            mean_ = (block - np.diag(np.diag(block))).values
            mean_[mean_ == 0] = np.nan
            mean.append(np.nanmean(mean_))

        comb = [[k, j] for k in range(self.lenlatent)
                for j in range(self.lenlatent)]

        comb_ = [(np.sqrt(mean[comb[i][1]] * mean[comb[i][0]]))
                 for i in range(self.lenlatent ** 2)]

        comb__ = []
        for i in range(self.lenlatent ** 2):
            block = (htmt_.ix[allBlocks[comb[i][1]],
                              allBlocks[comb[i][0]]]).values
#            block[block == 1] = np.nan
            comb__.append(np.nanmean(block))

        htmt__ = np.divide(comb__, comb_)
        where_are_NaNs = np.isnan(htmt__)
        htmt__[where_are_NaNs] = 0

        htmt = pd.DataFrame(np.tril(htmt__.reshape(
            (self.lenlatent, self.lenlatent)), k=-1), index=self.latent, columns=self.latent)

        return htmt


问题


面经


文章

微信
公众号

扫码关注公众号