python类masked_where()的实例源码

geoinfo.py 文件源码 项目:uncover-ml 作者: GeoscienceAustralia 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def numpy_band_stats(ds, tif, band_no, partitions=100):
    band = ds.GetRasterBand(band_no)
    data = band.ReadAsArray()
    no_data_val = band.GetNoDataValue()
    data_type = get_datatype(band)
    mask_data = ma.masked_where(data == no_data_val, data)

    if data_type is 'Categorical':
        no_categories = np.max(mask_data) - np.min(mask_data) + 1
    else:
        no_categories = np.nan

    image_source = geoio.RasterioImageSource(tif)
    l = [basename(tif), band_no, no_data_val,
         ds.RasterYSize, ds.RasterXSize,
         np.min(mask_data), np.max(mask_data),
         np.mean(mask_data), np.std(mask_data),
         data_type, float(no_categories),
         image_nans(image_source, partitions)]
    ds = None
    return [str(a) for a in l]
test_regression.py 文件源码 项目:Alfred 作者: jkachhadia 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_mem_masked_where(self,level=rlevel):
        # Ticket #62
        from numpy.ma import masked_where, MaskType
        a = np.zeros((1, 1))
        b = np.zeros(a.shape, MaskType)
        c = masked_where(b, a)
        a-c
test_regression.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_mem_masked_where(self,level=rlevel):
        # Ticket #62
        from numpy.ma import masked_where, MaskType
        a = np.zeros((1, 1))
        b = np.zeros(a.shape, MaskType)
        c = masked_where(b, a)
        a-c
test_regression.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_mem_masked_where(self,level=rlevel):
        # Ticket #62
        from numpy.ma import masked_where, MaskType
        a = np.zeros((1, 1))
        b = np.zeros(a.shape, MaskType)
        c = masked_where(b, a)
        a-c
test_regression.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_mem_masked_where(self,level=rlevel):
        # Ticket #62
        from numpy.ma import masked_where, MaskType
        a = np.zeros((1, 1))
        b = np.zeros(a.shape, MaskType)
        c = masked_where(b, a)
        a-c
test_regression.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_mem_masked_where(self,level=rlevel):
        # Ticket #62
        from numpy.ma import masked_where, MaskType
        a = np.zeros((1, 1))
        b = np.zeros(a.shape, MaskType)
        c = masked_where(b, a)
        a-c
plot.py 文件源码 项目:mcplates 作者: ian-r-rose 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def plot_distribution(ax, lon_samples, lat_samples, to_plot='d', resolution=30, **kwargs):

    if 'cmap' in kwargs:
        cmap = kwargs.pop('cmap')
    else:
        cmap = next(cmaps)

    artists = []

    if 'd' in to_plot:
        lon_grid, lat_grid, density = density_distribution(
            lon_samples, lat_samples, resolution)
        density = ma.masked_where(density <= 0.05*density.max(), density)
        a = ax.pcolormesh(lon_grid, lat_grid, density, cmap=cmap,
                          transform=ccrs.PlateCarree(), **kwargs)
        artists.append(a)

    if 'e' in to_plot:
        lon_grid, lat_grid, cumulative_density = cumulative_density_distribution(
            lon_samples, lat_samples, resolution)
        a = ax.contour(lon_grid, lat_grid, cumulative_density, levels=[
                       0.683, 0.955], cmap=cmap, transform=ccrs.PlateCarree())
        artists.append(a)

    if 's' in to_plot:
        a = ax.scatter(lon_samples, lat_samples, color=cmap(
            [0., 0.5, 1.])[-1], alpha=0.1, transform=ccrs.PlateCarree(), edgecolors=None, **kwargs)
        artists.append(a)

    return artists
test_regression.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_mem_masked_where(self,level=rlevel):
        # Ticket #62
        from numpy.ma import masked_where, MaskType
        a = np.zeros((1, 1))
        b = np.zeros(a.shape, MaskType)
        c = masked_where(b, a)
        a-c
test_regression.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_mem_masked_where(self,level=rlevel):
        # Ticket #62
        from numpy.ma import masked_where, MaskType
        a = np.zeros((1, 1))
        b = np.zeros(a.shape, MaskType)
        c = masked_where(b, a)
        a-c
getVIref.py 文件源码 项目:Global_GPP_VPM_NCEP_C3C4 作者: zhangyaonju 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def import_all_year_data(tile):
    temp = np.zeros([46, 2400*2400], np.dtype(float))
    if int(tile[5:6])<2:
        temp[:]=np.nan
    for doy in range(1, 369, 8):
        evifile = buildVrtFile(root, doy, tile, 'evi')
        cloudfile = buildVrtFile(root, doy, tile, 'cloudmask')
        aerosolfile = buildVrtFile(root, doy, tile, 'aerosolmask')
        #if no file found for this DOY
        if evifile == 0: continue
        #doyList.append(doy)
        #build vrt for EVI
        vrtEVI = os.path.join(os.path.dirname(evifile), str(1000+doy)[1:]+tile+'EVI_vrt.vrt')
        print "Building the vrt file: ", evifile
        os.system('gdalbuildvrt -separate -input_file_list '+evifile+' '+vrtEVI)
        inEVI = gdal.Open(vrtEVI)
        EVI = inEVI.ReadAsArray()
        #build vrt for cloudmask
        vrtcloud = os.path.join(os.path.dirname(cloudfile), str(1000+doy)[1:]+tile+'cloud_vrt.vrt')
        print "Building the vrt file: ", cloudfile
        os.system('gdalbuildvrt -separate -input_file_list '+cloudfile+' '+vrtcloud)
        incloud = gdal.Open(vrtcloud)
        cloud = incloud.ReadAsArray()
        #build vrt for aerosol
        vrtaerosol = os.path.join(os.path.dirname(aerosolfile), str(1000+doy)[1:]+tile+'aerosol_vrt.vrt')
        print "Building the vrt file: ", aerosolfile
        os.system('gdalbuildvrt -separate -input_file_list '+aerosolfile+' '+vrtaerosol)
        inaerosol = gdal.Open(vrtaerosol)
        aerosol = inaerosol.ReadAsArray()
        global rows, cols, geoProj, geoTran
        rows = 2400
        cols = 2400
        geoTran = inEVI.GetGeoTransform()
        geoProj = inEVI.GetProjection()
        #mask for bad quality
        EVIgood = ma.masked_where((cloud != 1)|(aerosol == 0)|(EVI < 0)|(EVI > 10000), EVI)
        EVIgood = EVIgood.reshape(EVIgood.size/2400/2400, 2400*2400)
        medianEVI = np.nanmedian(EVIgood, axis=0)
        EVI = None
        aerosol = None
        cloud = None
        EVIgood = None
        #assign to the 46 layer of matrix
        temp[(doy-1)/8, :] = medianEVI
        meanEVI = None
    return temp
__init__.py 文件源码 项目:PaleoView 作者: GlobalEcologyLab 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def barbs(self, x, y, u, v, *args, **kwargs):
        """
        Make a wind barb plot (u, v) with on the map.
        (see matplotlib.pyplot.barbs documentation).

        If ``latlon`` keyword is set to True, x,y are intrepreted as
        longitude and latitude in degrees.  Data and longitudes are
        automatically shifted to match map projection region for cylindrical
        and pseudocylindrical projections, and x,y are transformed to map
        projection coordinates. If ``latlon`` is False (default), x and y
        are assumed to be map projection coordinates.

        Extra keyword ``ax`` can be used to override the default axis instance.

        Other \*args and \**kwargs passed on to matplotlib.pyplot.barbs

        Returns two matplotlib.axes.Barbs instances, one for the Northern
        Hemisphere and one for the Southern Hemisphere.
        """
        if _matplotlib_version < '0.98.3':
            msg = dedent("""
            barb method requires matplotlib 0.98.3 or higher,
            you have %s""" % _matplotlib_version)
            raise NotImplementedError(msg)
        ax, plt = self._ax_plt_from_kw(kwargs)
        # allow callers to override the hold state by passing hold=True|False
        b = ax.ishold()
        h = kwargs.pop('hold',None)
        if h is not None:
            ax.hold(h)
        lons, lats = self(x, y, inverse=True)
        unh = ma.masked_where(lats <= 0, u)
        vnh = ma.masked_where(lats <= 0, v)
        ush = ma.masked_where(lats > 0, u)
        vsh = ma.masked_where(lats > 0, v)
        try:
            retnh =  ax.barbs(x,y,unh,vnh,*args,**kwargs)
            kwargs['flip_barb']=True
            retsh =  ax.barbs(x,y,ush,vsh,*args,**kwargs)
        except:
            ax.hold(b)
            raise
        ax.hold(b)
        # Because there are two collections returned in general,
        # we can't set the current image...
        #if plt is not None and ret.get_array() is not None:
        #    plt.sci(retnh)
        # clip for round polar plots.
        if self.round:
            retnh,c = self._clipcircle(ax,retnh)
            retsh,c = self._clipcircle(ax,retsh)
        # set axes limits to fit map region.
        self.set_axes_limits(ax=ax)
        return retnh,retsh
__init__.py 文件源码 项目:PaleoView 作者: GlobalEcologyLab 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def barbs(self, x, y, u, v, *args, **kwargs):
        """
        Make a wind barb plot (u, v) with on the map.
        (see matplotlib.pyplot.barbs documentation).

        If ``latlon`` keyword is set to True, x,y are intrepreted as
        longitude and latitude in degrees.  Data and longitudes are
        automatically shifted to match map projection region for cylindrical
        and pseudocylindrical projections, and x,y are transformed to map
        projection coordinates. If ``latlon`` is False (default), x and y
        are assumed to be map projection coordinates.

        Extra keyword ``ax`` can be used to override the default axis instance.

        Other \*args and \**kwargs passed on to matplotlib.pyplot.barbs

        Returns two matplotlib.axes.Barbs instances, one for the Northern
        Hemisphere and one for the Southern Hemisphere.
        """
        if _matplotlib_version < '0.98.3':
            msg = dedent("""
            barb method requires matplotlib 0.98.3 or higher,
            you have %s""" % _matplotlib_version)
            raise NotImplementedError(msg)
        ax, plt = self._ax_plt_from_kw(kwargs)
        # allow callers to override the hold state by passing hold=True|False
        b = ax.ishold()
        h = kwargs.pop('hold',None)
        if h is not None:
            ax.hold(h)
        lons, lats = self(x, y, inverse=True)
        unh = ma.masked_where(lats <= 0, u)
        vnh = ma.masked_where(lats <= 0, v)
        ush = ma.masked_where(lats > 0, u)
        vsh = ma.masked_where(lats > 0, v)
        try:
            retnh =  ax.barbs(x,y,unh,vnh,*args,**kwargs)
            kwargs['flip_barb']=True
            retsh =  ax.barbs(x,y,ush,vsh,*args,**kwargs)
        except:
            ax.hold(b)
            raise
        ax.hold(b)
        # Because there are two collections returned in general,
        # we can't set the current image...
        #if plt is not None and ret.get_array() is not None:
        #    plt.sci(retnh)
        # clip for round polar plots.
        if self.round:
            retnh,c = self._clipcircle(ax,retnh)
            retsh,c = self._clipcircle(ax,retsh)
        # set axes limits to fit map region.
        self.set_axes_limits(ax=ax)
        return retnh,retsh
utils.py 文件源码 项目:audio-tagging-toolkit 作者: hipstas 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def get_vowel_segments(media_path, n_fft=2048):
    downsample = 1
    samplerate = 44100 // downsample

    win_s = n_fft // downsample # fft size
    hop_s = n_fft  // downsample # hop size

    s = source(media_path, samplerate, hop_s)
    samplerate = s.samplerate

    tolerance = 0.6

    pitch_o = pitch("yin", win_s, hop_s, samplerate)
    pitch_o.set_unit("Hz")
    pitch_o.set_tolerance(tolerance)

    pitches = []
    confidences = []

    # total number of frames read
    total_frames = 0
    samples=[]
    pitches=[]
    while True:
        samples, read = s()
        pitch_ = pitch_o(samples)[0]
        #pitch = int(round(pitch))
        confidence = pitch_o.get_confidence()
        #print("%f %f %f" % (total_frames / float(samplerate), pitch, confidence))
        pitches += [pitch_]
        confidences += [confidence]
        total_frames += read
        if read < hop_s: break

    pitches = np.array(pitches)
    confidences = np.array(confidences)

    cleaned_pitches = ma.masked_where(confidences < tolerance, pitches)
    cleaned_pitches = ma.masked_where(cleaned_pitches > 1000, cleaned_pitches)

    try: output = list(np.logical_not(cleaned_pitches.mask))
    except: output = []

    return output


问题


面经


文章

微信
公众号

扫码关注公众号