def convolve_laplacien2_gu(image, index, out_image):
nx, ny = image.shape
for j in range(1,ny-1):
out_image[j-1] = np.abs(4*image[index[0],j]-image[index[0]-1,j]-image[index[0]+1,j]
-image[index[0],j-1]-image[index[0],j+1])
#@numba.guvectorize(['(float64[:,:], int64[:], int64[:], float64[:])'], '(nx, ny),(),()->()', target='parallel', nopython=True)
#def convolve_laplacien2_gu(image, i, j, out_image):
# nx, ny = image.shape
# out_image[0] = np.abs(4*image[i[0],j[0]]-image[i[0]-1,j[0]]-image[i[0]+1,j[0]]
# -image[i[0],j[0]-1]-image[i[0],j[0]+1])
#@numba.jit
#def convolve_laplacien2(image):
# height, width = image.shape
# out_image = np.empty((height-2,width-2))
# i = np.arange(1, height-1)[:, np.newaxis]
# j = np.arange(1, width-1)[np.newaxis, :]
# convolve_laplacien2_gu(image, i, j, out_image)
# # On renormalise l'image :
# valmax = np.max(out_image)
# valmax = max(1.,valmax)+1.E-9
# out_image *= 1./valmax
# return out_image