def plot_graph(self, file_name: str='graph.png', label_nodes: bool=True, label_edges: bool=True):
import matplotlib.pyplot as plt
# pos = nx.spring_layout(self.graph)
pos = nx.shell_layout(self.graph, dim=1024, scale=0.5)
# pos = nx.random_layout(self.graph, dim=1024, scale=0.5)
if label_edges:
edge_labels = {
(edge[0], edge[1]): edge[2]['object'] for edge in self.graph.edges(data=True)
}
nx.draw_networkx_edge_labels(self.graph, pos, edge_labels, font_size=5)
if label_nodes:
labels = {node[0]: node[1] for node in self.graph.nodes(data=True)}
nx.draw_networkx_labels(self.graph, pos, labels, font_size=5, alpha=0.8)
# nx.draw(self.graph, with_labels=True, arrows=True, node_size=80)
nx.draw_spectral(self.graph, with_labels=True, arrows=True, node_size=80)
plt.savefig(file_name, dpi=1024)
python类random_layout()的实例源码
def create_web_network_graph(self):
''' Functions that creates a NetworkX network visualization from the
explored pages
For documentation about NetworkX, check : https://networkx.github.io/'''
#Create a directed graph
web_graph=nx.DiGraph()
# Add our start nodes first to the graph, as the center.
web_graph.add_nodes_from(self.to_visit_urls[0])
#Now we explore our results to add the relevant websites to the graph
for base_url in os.listdir(self.main_directory+"web_content/"):
if self.is_danish_company(base_url): #Only Danish companies are added :
web_graph.add_node(base_url)
#Explore again to fill up all the edges (connections/links) between websites
for base_url in os.listdir(self.main_directory+"web_content/"):
if self.is_danish_company(base_url): # Same as before only Danish companies
#Load up the links from this Danish company to other websites
filename = self.main_directory+"web_content/"+base_url+"/external_urls_"+str(self.redirect_count)+"_redirect.p"
external_base_urls=pickle.load(open(filename, "rb" ))
#Now we also filter the list of external links
for external_link in external_base_urls:
if web_graph.has_node(external_link) : # The link is also in the graph, so the connection is added
web_graph.add_edge(base_url,external_link)
#Finally draw the network
#plt.figure(figsize=(120, 90))
plt.figure(figsize=(40, 40))
pos = nx.random_layout(web_graph)
nx.draw_networkx_nodes(web_graph,pos,node_size=2500)
nx.draw_networkx_nodes(web_graph,nodelist=self.to_visit_urls[0],pos=pos,node_size=3000,node_color='b')
#nx.draw_networkx_labels(web_graph,pos,fontsize=12)
nx.draw_networkx_edges(web_graph,pos,alpha=0.5)
plt.savefig(self.main_directory+"DTU network.png",dpi=40)
plt.show()
def random_layout(self, graph):
return nx.random_layout(graph,center=[0.5,0.5])
def main():
"""
?????
:return:
"""
edges = [] # ???????
domain_name = 'jd.com'
domain_pkts = get_data(domain_name)
from collections import defaultdict
node_dict = defaultdict(set)
for i in domain_pkts[0]['details']:
for v in i['answers']:
if v['dm_type'] == 'CNAME':
node_dict[v['domain_name']].add('main')
node_dict[v['dm_data']].add('cname')
else:
node_dict[v['dm_data']].add('ip')
node_dict[v['domain_name']].add('main')
edges.append((v['domain_name'],v['dm_data']))
node_cat ={}
for i in node_dict:
if 'ip' in list(node_dict[i]):
node_cat[i]='ip'
elif 'cname' in list(node_dict[i]):
node_cat[i]='cname'
else:
node_cat[i]='main'
plt.figure(1,figsize=(10,8))
G=nx.Graph()
G.add_edges_from(edges)
for node in G.nodes():
G.node[node]['category'] = node_cat[node]
color_map = {'main': 'b', 'cname': 'c', 'ip': 'r'}
pos = graphviz_layout(G, prog="neato") # neato fdp
# pos = nx.random_layout(G)
nx.draw(G,
pos,
node_size=100,
node_color=[color_map[G.node[node]['category']] for node in G],
label="nihao"
)
plt.axis('off')
plt.savefig('./graph/' + domain_name + "_type.png", dpi=75)
plt.show()