def SF_Generateor(N=1000, m=3):
G = nx.barabasi_albert_graph(N, m)
#component of the network
if nx.is_connected(G) == False:
# Get the Greatest Component of Networks #####
components = sorted(nx.connected_components(G), key = len, reverse=True)
print "Component Number of the Generated Network:", len(components)
for i in range(1, len(components)):
for node in components[i]:
G.remove_node(node)
#end for
print nx.is_connected(G)
#endif
return G
#************************************************************************
python类barabasi_albert_graph()的实例源码
def SF_Generateor(N=1000, m=3):
G = nx.barabasi_albert_graph(N, m)
#component of the network
if nx.is_connected(G) == False:
# Get the Greatest Component of Networks #####
components = sorted(nx.connected_components(G), key = len, reverse=True)
print "Component Number of the Generated Network:", len(components)
for i in range(1, len(components)):
for node in components[i]:
G.remove_node(node)
#end for
print nx.is_connected(G)
#endif
return G
#************************************************************************
def save_topology(adj, path, graph_name, link_possibility):
graph = nx.Graph()
if not os.path.isdir(path):
os.makedirs(path)
# 1. transfer adj to nx
adj_list = list(np.squeeze(adj[0,:,:,:]))
for src in range(len(adj_list)):
graph.add_node(src)
for dst in range(len(adj_list[src])):
if adj_list[src][dst] >= link_possibility: # ?? sample ?? ?? [0,1]???
graph.add_edge(src,dst)
# 2. read position
pos_file = glob.glob(path+'*.pos')
if pos_file == []:
node_size = len(graph.nodes())
tmp_graph = nx.barabasi_albert_graph(node_size,2)
pos = nx.spring_layout(tmp_graph)
pickle.dump(pos, open(path+'graph.pos','wb'))
else:
pos = pickle.load(open(pos_file[0],'rb'))
# 3. draw graph
nx.draw_networkx_nodes(graph, pos, node_size=300, node_color='b', alpha=0.8)
nx.draw_networkx_edges(graph, pos, width=1.5, alpha=0.8)
nx.draw_networkx_labels(graph, pos, font_color='w')
plt.savefig(path+'/'+graph_name+'.png')
plt.savefig(path+'/'+graph_name+'.pdf')
# plt.show()
plt.clf()
# 4. store graph
pickle.dump(graph, open(path+graph_name+'.graph','wb'))
# ------------------------------
# show_all_variables()
# @purpose: ??TF??????
# ------------------------------