python类eigenvector_centrality()的实例源码

egocentric_network_1_5.py 文件源码 项目:Visualization-of-popular-algorithms-in-Python 作者: MUSoC 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def CentralityMeasures(G):
    # Betweenness centrality
    bet_cen = nx.betweenness_centrality(G)
    # Closeness centrality
    clo_cen = nx.closeness_centrality(G)
    # Eigenvector centrality
    eig_cen = nx.eigenvector_centrality(G)
    # Degree centrality
    deg_cen = nx.degree_centrality(G)
    #print bet_cen, clo_cen, eig_cen
    print "# Betweenness centrality:" + str(bet_cen)
    print "# Closeness centrality:" + str(clo_cen)
    print "# Eigenvector centrality:" + str(eig_cen)
    print "# Degree centrality:" + str(deg_cen)


#main function
egocentric_network_2.py 文件源码 项目:Visualization-of-popular-algorithms-in-Python 作者: MUSoC 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def CentralityMeasures(G):
    # Betweenness centrality
    bet_cen = nx.betweenness_centrality(G)
    # Closeness centrality
    clo_cen = nx.closeness_centrality(G)
    # Eigenvector centrality
    eig_cen = nx.eigenvector_centrality(G)
    # Degree centrality
    deg_cen = nx.degree_centrality(G)
    #print bet_cen, clo_cen, eig_cen
    print "# Betweenness centrality:" + str(bet_cen)
    print "# Closeness centrality:" + str(clo_cen)
    print "# Eigenvector centrality:" + str(eig_cen)
    print "# Degree centrality:" + str(deg_cen)


#main function
egocentric_network_1.py 文件源码 项目:Visualization-of-popular-algorithms-in-Python 作者: MUSoC 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def CentralityMeasures(G):
    # Betweenness centrality
    bet_cen = nx.betweenness_centrality(G)
    # Closeness centrality
    clo_cen = nx.closeness_centrality(G)
    # Eigenvector centrality
    eig_cen = nx.eigenvector_centrality(G)
    # Degree centrality
    deg_cen = nx.degree_centrality(G)
    #print bet_cen, clo_cen, eig_cen
    print "# Betweenness centrality:" + str(bet_cen)
    print "# Closeness centrality:" + str(clo_cen)
    print "# Eigenvector centrality:" + str(eig_cen)
    print "# Degree centrality:" + str(deg_cen)


#main function
conversation.py 文件源码 项目:facebook-message-analysis 作者: szheng17 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def get_user_to_eigenvector_centrality(self, G):
        return nx.eigenvector_centrality(G)
sna_test.py 文件源码 项目:ocean 作者: worldoss 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def central_list(E):
    centralities = []
    centralities.append(nx.in_degree_centrality(E))
    centralities.append(nx.out_degree_centrality(E))
    centralities.append(nx.closeness_centrality(E))
    centralities.append(nx.betweenness_centrality(E))
    centralities.append(nx.eigenvector_centrality(E))

    for node in E.nodes_iter():
      measures = ("\t").join(map(lambda f: str(f[node]), centralities))
      print("%s: %s" % (node, measures))
Centrality.py 文件源码 项目:PhD 作者: wutaoadeny 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def Eigen_Centrality(G):
    Eigen_Centrality = nx.eigenvector_centrality(G)
    #print "Eigen_Centrality:", sorted(Eigen_Centrality.iteritems(), key=lambda d:d[1], reverse = True)
    return Eigen_Centrality


#*****************************************************************************
Centrality.py 文件源码 项目:PhD 作者: wutaoadeny 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def Eigen_Centrality(G):
    Eigen_Centrality = nx.eigenvector_centrality(G)
    #print "Eigen_Centrality:", sorted(Eigen_Centrality.iteritems(), key=lambda d:d[1], reverse = True)
    return Eigen_Centrality


#**********************************************************************************
nxgraph.py 文件源码 项目:anomalous-vertices-detection 作者: Kagandi 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def eigenvector(self):
        """ Compute the eigenvector centrality for the graph G.

        Returns
        -------
        nodes : dictionary
            Dictionary of nodes with eigenvector centrality as the value.

        Examples
        --------
        >>>
        """
        return nx.eigenvector_centrality(self._graph, weight=self._weight_field)

    # @property
net_metrics.py 文件源码 项目:HRG 作者: nddsg 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def draw_network_value(orig_g, mG):
    """
    Network values: The distribution of eigenvector components (indicators of "network value")
    associated to the largest eigenvalue of the graph adjacency matrix has also been found to be
    skewed (Chakrabarti et al., 2004).
    """
    eig_cents = [nx.eigenvector_centrality_numpy(g) for g in mG]  # nodes with eigencentrality

    srt_eig_cents = sorted(eig_cents, reverse=True)
    net_vals = []
    for cntr in eig_cents:
        net_vals.append(sorted(cntr.values(), reverse=True))
    df = pd.DataFrame(net_vals)

    plt.xscale('log')
    plt.yscale('log')
    plt.fill_between(df.columns, df.mean() - df.sem(), df.mean() + df.sem(), color='blue', alpha=0.2, label="se")

    h, = plt.plot(df.mean(), color='blue', aa=True, linewidth=4, ls='--', label="H*")
    orig, = plt.plot(sorted(nx.eigenvector_centrality(orig_g).values(), reverse=True), color='black', linewidth=4,
                     ls='-', label="H")

    plt.title('Principle Eigenvector Distribution')
    plt.ylabel('Principle Eigenvector')
    plt.tick_params(
        axis='x',  # changes apply to the x-axis
        which='both',  # both major and minor ticks are affected
        bottom='off',  # ticks along the bottom edge are off
        top='off',  # ticks along the top edge are off
        labelbottom='off')  # labels along the bottom edge are off

    plt.legend([orig, h], ['$H$', 'HRG $H^*$'], loc=3)
    # fig = plt.gcf()
    # fig.set_size_inches(5, 4, forward=True)
    plt.show()


问题


面经


文章

微信
公众号

扫码关注公众号