def CentralityMeasures(G):
# Betweenness centrality
bet_cen = nx.betweenness_centrality(G)
# Closeness centrality
clo_cen = nx.closeness_centrality(G)
# Eigenvector centrality
eig_cen = nx.eigenvector_centrality(G)
# Degree centrality
deg_cen = nx.degree_centrality(G)
#print bet_cen, clo_cen, eig_cen
print "# Betweenness centrality:" + str(bet_cen)
print "# Closeness centrality:" + str(clo_cen)
print "# Eigenvector centrality:" + str(eig_cen)
print "# Degree centrality:" + str(deg_cen)
#main function
python类closeness_centrality()的实例源码
egocentric_network_1_5.py 文件源码
项目:Visualization-of-popular-algorithms-in-Python
作者: MUSoC
项目源码
文件源码
阅读 35
收藏 0
点赞 0
评论 0
egocentric_network_2.py 文件源码
项目:Visualization-of-popular-algorithms-in-Python
作者: MUSoC
项目源码
文件源码
阅读 29
收藏 0
点赞 0
评论 0
def CentralityMeasures(G):
# Betweenness centrality
bet_cen = nx.betweenness_centrality(G)
# Closeness centrality
clo_cen = nx.closeness_centrality(G)
# Eigenvector centrality
eig_cen = nx.eigenvector_centrality(G)
# Degree centrality
deg_cen = nx.degree_centrality(G)
#print bet_cen, clo_cen, eig_cen
print "# Betweenness centrality:" + str(bet_cen)
print "# Closeness centrality:" + str(clo_cen)
print "# Eigenvector centrality:" + str(eig_cen)
print "# Degree centrality:" + str(deg_cen)
#main function
egocentric_network_1.py 文件源码
项目:Visualization-of-popular-algorithms-in-Python
作者: MUSoC
项目源码
文件源码
阅读 39
收藏 0
点赞 0
评论 0
def CentralityMeasures(G):
# Betweenness centrality
bet_cen = nx.betweenness_centrality(G)
# Closeness centrality
clo_cen = nx.closeness_centrality(G)
# Eigenvector centrality
eig_cen = nx.eigenvector_centrality(G)
# Degree centrality
deg_cen = nx.degree_centrality(G)
#print bet_cen, clo_cen, eig_cen
print "# Betweenness centrality:" + str(bet_cen)
print "# Closeness centrality:" + str(clo_cen)
print "# Eigenvector centrality:" + str(eig_cen)
print "# Degree centrality:" + str(deg_cen)
#main function
def Nodes_Ranking(G, index):
#Katz_Centrality = nx.katz_centrality(G)
#print "Katz_Centrality:", sorted(Katz_Centrality.iteritems(), key=lambda d:d[1], reverse = True)
#Page_Rank(G)
if index == "degree_centrality":
return Degree_Centrality(G)
if index == "degree_mass_Centrality":
return Degree_Mass_Centrality(G)
if index == "between_centrality":
return Between_Centrality(G)
if index == "closeness_centrality":
return Closeness_Centrality(G)
if index == "kshell_centrality":
return KShell_Centrality(G)
if index == "eigen_centrality":
return Eigen_Centrality_Andy(G)
if index == "collective_influence":
return Collective_Influence(G)
if index == "enhanced_collective_centrality":
return Enhanced_Collective_Influence(G)
if index == "hybrid_diffusion_centrality":
return Hybrid_Diffusion_Centrality(G)
def calculate_closeness(graph):
print "\n\tCalculating Closeness Centrality..."
g = graph
clo = nx.closeness_centrality(g)
nx.set_node_attributes(g, 'closeness', clo)
degclos_sorted = sorted(clo.items(), key=itemgetter(1), reverse=True)
for key, value in degclos_sorted[0:10]:
print "\t > ", key, round(value, 4)
return g, clo
def UpdateThresholdDegree(self):
self.g = self.Graph_data().DrawHighlightedGraph(self.EdgeSliderValue)
# Degree Centrality for the the nodes involved
self.Centrality=nx.degree_centrality(self.g)
self.Betweeness=nx.betweenness_centrality(self.g)
self.ParticipationCoefficient = self.communityDetectionEngine.participation_coefficient(self.g,True)
self.LoadCentrality = nx.load_centrality(self.g)
self.ClosenessCentrality = nx.closeness_centrality(self.g)
for i in range(len(self.ParticipationCoefficient)):
if (str(float(self.ParticipationCoefficient[i])).lower() == 'nan'):
self.ParticipationCoefficient[i] = 0
i = 0
""" Calculate rank and Zscore """
MetrixDataStructure=eval('self.'+self.nodeSizeFactor)
from collections import OrderedDict
self.sortedValues = OrderedDict(sorted(MetrixDataStructure.items(), key=lambda x:x[1]))
self.average = np.average(self.sortedValues.values())
self.std = np.std(self.sortedValues.values())
for item in self.scene().items():
if isinstance(item, Node):
Size = eval('self.'+self.nodeSizeFactor+'[i]')
rank, Zscore = self.calculateRankAndZscore(i)
item.setNodeSize(Size,self.nodeSizeFactor,rank,Zscore)
i = i + 1
self.ThresholdChange.emit(True)
if not(self.ColorNodesBasedOnCorrelation):
self.Ui.communityLevelLineEdit.setText(str(self.level))
self.DendoGramDepth.emit(self.level)
self.Refresh()
def central_list(E):
centralities = []
centralities.append(nx.in_degree_centrality(E))
centralities.append(nx.out_degree_centrality(E))
centralities.append(nx.closeness_centrality(E))
centralities.append(nx.betweenness_centrality(E))
centralities.append(nx.eigenvector_centrality(E))
for node in E.nodes_iter():
measures = ("\t").join(map(lambda f: str(f[node]), centralities))
print("%s: %s" % (node, measures))
def Closeness_Centrality(G):
Closeness_Centrality = nx.closeness_centrality(G)
#print "Closeness_Centrality:", sorted(Closeness_Centrality.iteritems(), key=lambda d:d[1], reverse = True)
return Closeness_Centrality
def Closeness_Centrality(G):
Closeness_Centrality = nx.closeness_centrality(G)
#print "Closeness_Centrality:", sorted(Closeness_Centrality.iteritems(), key=lambda d:d[1], reverse = True)
return Closeness_Centrality
def Nodes_Ranking(G, index):
if index == "degree_centrality":
return Degree_Centrality(G)
if index == "between_centrality":
return Between_Centrality(G)
if index == "closeness_centrality":
return Closeness_Centrality(G)
if index == "pagerank_centrality":
return Page_Rank(G)
if index == "kshell_centrality":
return KShell_Centrality(G)
if index == "collective_influence":
return Collective_Influence(G)
if index == "enhanced_collective_centrality":
return Enhanced_Collective_Influence(G)
if index == "eigen_centrality":
return Eigen_Centrality_Avg(G) #Eigen_Centrality_Andy(G)
if index == "md_eigen_centrality":
return MD_Eigen_Centrality_Andy(G)
if index == "hc_eigen_centrality":
return HC_Eigen_Centrality_Andy(G)
#if index == "hybrid_diffusion_centrality":
# return Hybrid_Diffusion_Centrality(G)
if index == "PIR_Centrality": #i.e. weighted_hybrid_diffusion_centrality
return PIR_Centrality_Avg(G) #Weighted_Hybrid_Diffusion_Centrality(G)
def statistics(self):
"""Return some topological information about the experiment"""
stat = {}
stat["net diameter"] = nx.diameter(self.network)
stat["net radius"] = nx.radius(self.network)
stat["net asp"] = nx.average_shortest_path_length(self.network)
stat["input asp"] = net.inputASL(self.network, self.inputc)
for m in self.measures.values():
distr = net.distances_to_roi(self.network, self.inputc,m.roi)
stat["stim to roi distances, mean",m.name] = np.mean(distr)
stat["stim to roi distances, var",m.name] = np.var(distr)
centrs = nx.closeness_centrality(self.network)
stat["roi centralities",m.name] = [centrs[tuple(node)]
for node in np.transpose(m.roi.nonzero())]
return stat
def createroiidxs(network,distance):
"""
Choose two central nodes, some distance apart, and return their (i,j) indices.
Args:
network: networkx graph
distance: how far apart the two nodes should be.
Returns:
A tuple of two (i,j) indices / node labels
"""
nodes,centralities = zip(*nx.closeness_centrality(network).items())
# sort nodes from most central to least central:
centr_arxs = np.argsort(centralities)
nodes_sorted = [n for n in reversed(np.array(nodes)[centr_arxs])]
k = 0
while k<len(nodes_sorted):
# pick some node in the middle of the graph (high centrality)
middlenode = tuple(nodes_sorted[k])
# now pick the most central node that meets the given distance criterion.
# [since we dont want to end up near the boundaries)
for n in nodes_sorted:
if nx.shortest_path_length(network,middlenode,tuple(n)) == distance:
return middlenode,tuple(n)
# if that didnt work, try starting with a different, less central middlenode.
k = k+1
raise Exception("speficied distance to high for this network")
def main(filename, type, constructed_graph = -1):
# 1. original graph
original_graph_path = os.path.join("data",filename,"")
original_graph = generate_graph(original_graph_path,filename,-1)
plt.figure("original graph degree distribution")
draw_degree(original_graph)
print('original edge number: ',len(original_graph.edges()))
# 2. reconstruct graph
if constructed_graph == -1:
reconstruct_graph_path = os.path.join("reconstruction", filename, type,"")
reconstruct_graph_adj = pickle.load(open(glob.glob(reconstruct_graph_path+"*.adj")[0],'rb'))
else:
reconstruct_graph_adj = constructed_graph
reconstruct_graph = adj2Graph(reconstruct_graph_adj, edgesNumber = len(original_graph.edges()))
print('edge number: ', len(reconstruct_graph.edges()))
plt.figure("reconstruct graph degree distribution")
draw_degree(reconstruct_graph)
print("Clustering: ",nx.average_clustering(original_graph), ' ', nx.average_clustering(reconstruct_graph))
# print("Diameter: ", nx.average_shortest_path_length(original_graph), ' ', nx.average_shortest_path_length(reconstruct_graph))
# print("degree centrality: ", nx.degree_centrality(original_graph), ' ', nx.degree_centrality(reconstruct_graph))
#print("closeness centrality: ", nx.closeness_centrality(original_graph), ' ', nx.closeness_centrality(reconstruct_graph))
plt.show()
def closeness(self):
"""
Parameters
----------
Returns
-------
NxGraph: Graph object
Examples
--------
>>>
"""
return nx.closeness_centrality(self._graph)
def __init__(self, method='degree', analyzer=NltkNormalizer().split_and_normalize):
self.analyze = analyzer
self.method = method
self.methods_on_digraph = {'hits', 'pagerank', 'katz'}
self._get_scores = {'degree': nx.degree, 'betweenness': nx.betweenness_centrality,
'pagerank': nx.pagerank_scipy, 'hits': self._hits, 'closeness': nx.closeness_centrality,
'katz': nx.katz_centrality}[method]
# Add a new value when a new vocabulary item is seen
self.vocabulary = defaultdict()
self.vocabulary.default_factory = self.vocabulary.__len__
screenplay_network_viz.py 文件源码
项目:sceneTransitionNetMovieClassification
作者: daltonsi
项目源码
文件源码
阅读 33
收藏 0
点赞 0
评论 0
def graph_info(g):
result = {}
components = list(nx.strongly_connected_component_subgraphs(g))
in_degrees = g.in_degree()
out_degrees = g.out_degree()
highest_in_degree_node = sorted(in_degrees, key = lambda x: in_degrees[x], reverse = True)[0]
highest_out_degree_node = sorted(out_degrees, key = lambda x: out_degrees[x], reverse = True)[0]
result['highest in_degree node'] = highest_in_degree_node
result['highest out_degree_node'] = highest_out_degree_node
result['numnber of components'] = len(components)
result['number of nodes'] = g.number_of_nodes()
result['number of edges'] = g.number_of_edges()
#Degree centrality
in_degree_centrality = nx.in_degree_centrality(g)
out_degree_centrality = nx.out_degree_centrality(g)
result['sorted in_degree centrality'] = sorted([(el,in_degree_centrality[el]) for el in g.nodes()], key = lambda x: x[1], reverse = True)
result['sorted out_degree centrality'] = sorted([(el,out_degree_centrality[el]) for el in g.nodes()], key = lambda x: x[1], reverse = True)
result['closeness_centrality'] = sorted([(el,nx.closeness_centrality(g)[el]) for el in nx.closeness_centrality(g)], key = lambda x: x[1], reverse = True)
result['highest in_degree node closeness'] = nx.closeness_centrality(g)[highest_in_degree_node]
result['highest out_degree node closeness'] = nx.closeness_centrality(g)[highest_out_degree_node]
result['betweenness centrality'] = sorted([(el,nx.betweenness_centrality(g)[el]) for el in nx.betweenness_centrality(g)], key = lambda x: x[1], reverse = True)
result['highest in_degree node betweenness'] = nx.betweenness_centrality(g)[highest_in_degree_node]
result['highest in_degree node betweenness'] = nx.betweenness_centrality(g)[highest_out_degree_node]
largest_component = sorted (components, key = lambda x: x.number_of_nodes(), reverse = True)[0]
result['largest strongly component percent'] = largest_component.number_of_nodes()/float(g.number_of_nodes())
result['largest strongly component diameter'] = nx.diameter(largest_component)
result['largest strongly component average path length'] = nx.average_shortest_path_length(largest_component)
result['average_degree (undireceted)'] = sum(g.degree().values())/float(g.number_of_nodes())
result['avg_cluster_coefficient (transitivity)'] = nx.transitivity(g)
return result
def changeLayout(self,Layout='sfdp'):
Layout = (Layout.encode('ascii','ignore')).replace(' ','')
self.g = self.Graph_data().DrawHighlightedGraph(self.EdgeSliderValue)
# asking community detection Engine to compute the Layout
self.pos,Factor = self.communityDetectionEngine.communityLayoutCalculation(Layout,self.g)
# Degree Centrality for the the nodes involved
self.Centrality=nx.degree_centrality(self.g)
self.Betweeness=nx.betweenness_centrality(self.g)
self.LoadCentrality = nx.load_centrality(self.g)
self.ParticipationCoefficient = self.communityDetectionEngine.participation_coefficient(self.g,True)
self.ClosenessCentrality = nx.closeness_centrality(self.g)
for i in range(len(self.ParticipationCoefficient)):
if (str(float(self.ParticipationCoefficient[i])).lower() == 'nan'):
self.ParticipationCoefficient[i] = 0
i = 0
""" Calculate rank and Zscore """
MetrixDataStructure=eval('self.'+self.nodeSizeFactor)
from collections import OrderedDict
self.sortedValues = OrderedDict(sorted(MetrixDataStructure.items(), key=lambda x:x[1]))
self.average = np.average(self.sortedValues.values())
self.std = np.std(self.sortedValues.values())
for item in self.scene().items():
if isinstance(item, Node):
x,y=self.pos[i]
item.setPos(QtCore.QPointF(x,y)*Factor)
Size = eval('self.'+self.nodeSizeFactor+'[i]')
rank, Zscore = self.calculateRankAndZscore(i)
item.setNodeSize(Size,self.nodeSizeFactor,rank,Zscore)
i = i + 1
for edge in self.edges:
edge().adjust()
self.Refresh()
if not(self.PositionPreserve):
self.Scene_to_be_updated.setSceneRect(self.Scene_to_be_updated.itemsBoundingRect())
self.setScene(self.Scene_to_be_updated)
self.fitInView(self.Scene_to_be_updated.itemsBoundingRect(),QtCore.Qt.KeepAspectRatio)
self.Scene_to_be_updated.update()
def main():
domain_name = 'baidu.com'
domain_pkts = get_data(domain_name)
node_cname, node_ip, visit_total, edges, node_main = get_ip_cname(domain_pkts[0]['details'])
for i in domain_pkts[0]['details']:
for v in i['answers']:
edges.append((v['domain_name'],v['dm_data']))
DG = nx.DiGraph()
DG.add_edges_from(edges)
# ?????????IP?node
for node in DG:
if node in node_main and DG.successors(node) in node_ip:
print node
# ??cname???IP????
for node in DG:
if node in node_cname and DG.successors(node) not in node_cname: # ???ip?????cname
print "node",DG.out_degree(node),DG.in_degree(node),DG.degree(node)
# ?cname???????
# for node in DG:
# if node in node_cname and DG.predecessors(node) not in node_cname:
# print len(DG.predecessors(node))
for node in DG:
if node in node_main:
if len(DG.successors(node)) ==3:
print node
print DG.successors(node)
# print sorted(nx.degree(DG).values())
print nx.degree_assortativity_coefficient(DG)
average_degree = sum(nx.degree(DG).values())/(len(node_cname)+len(node_ip)+len(node_main))
print average_degree
print len(node_cname)+len(node_ip)+len(node_main)
print len(edges)
print nx.degree_histogram(DG)
# print nx.degree_centrality(DG)
# print nx.in_degree_centrality(DG)
# print nx.out_degree_centrality(DG)
# print nx.closeness_centrality(DG)
# print nx.load_centrality(DG)