def inference(sess,preprocessed_image):
# Forward pass of the preprocessed image into the network defined in the net.py file
predictions = sess.run(net.o9,feed_dict={net.x:preprocessed_image})
return predictions
### MAIN ##############################################################################################################
python类py()的实例源码
def inference(sess,preprocessed_image):
# Forward pass of the preprocessed image into the network defined in the net.py file
predictions = sess.run(net.o9,feed_dict={net.x:preprocessed_image})
return predictions
### MAIN ##############################################################################################################
def main(_):
# Definition of the paths
weights_path = './tiny-yolo-voc.weights'
input_img_path = './horses.jpg'
output_image_path = './output.jpg'
# If you do not have the checkpoint yet keep it like this! When you will run test.py for the first time it will be created automatically
ckpt_folder_path = './ckpt/'
# Definition of the parameters
input_height = 416
input_width = 416
score_threshold = 0.3
iou_threshold = 0.3
# Definition of the session
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
# Check for an existing checkpoint and load the weights (if it exists) or do it from binary file
print('Looking for a checkpoint...')
saver = tf.train.Saver()
_ = weights_loader.load(sess,weights_path,ckpt_folder_path,saver)
# Preprocess the input image
print('Preprocessing...')
preprocessed_image = preprocessing(input_img_path,input_height,input_width)
# Compute the predictions on the input image
print('Computing predictions...')
predictions = inference(sess,preprocessed_image)
# Postprocess the predictions and save the output image
print('Postprocessing...')
output_image = postprocessing(predictions,input_img_path,score_threshold,iou_threshold,input_height,input_width)
cv2.imwrite(output_image_path,output_image)
emotion_voice.py 文件源码
项目:Emotion_Voice_Recognition_Chainer-
作者: SnowMasaya
项目源码
文件源码
阅读 18
收藏 0
点赞 0
评论 0
def __set_cpu_or_gpu(self):
# Prepare multi-layer perceptron model, defined in net.py
if self.gpu >= 0:
cuda.get_device(self.gpu).use()
self.model.to_gpu()
self.xp = np if self.gpu < 0 else cuda.cupy
predict_emotion.py 文件源码
项目:Emotion_Voice_Recognition_Chainer-
作者: SnowMasaya
项目源码
文件源码
阅读 17
收藏 0
点赞 0
评论 0
def __set_cpu_or_gpu(self):
# Prepare multi-layer perceptron model, defined in net.py
if self.gpu >= 0:
cuda.get_device(self.gpu).use()
self.model.to_gpu()
self.xp = np if self.gpu < 0 else cuda.cupy