python类Axes3D()的实例源码

test_utils.py 文件源码 项目:grove 作者: rigetticomputing 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_visualization():
    ax = Axes3D(figure())
    # Without axis.
    ut.state_histogram(grove.tomography.operator_utils.GS, title="test")
    # With axis.
    ut.state_histogram(grove.tomography.operator_utils.GS, ax, "test")
    assert ax.get_title() == "test"

    ptX = grove.tomography.operator_utils.PAULI_BASIS.transfer_matrix(qt.to_super(
        grove.tomography.operator_utils.QX)).toarray()
    ax = Mock()
    with patch("matplotlib.pyplot.colorbar"):
        ut.plot_pauli_transfer_matrix(ptX, ax, grove.tomography.operator_utils.PAULI_BASIS.labels, "bla")
    assert ax.imshow.called
    assert ax.set_xlabel.called
    assert ax.set_ylabel.called
binarySTLreader.py 文件源码 项目:BinarySTLfileReader 作者: sukhbinder 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def ShowCooordsTopology(coords,topo):
    '''Plots the STL if coords and topology is given.  '''
    ax = a3d.Axes3D(plt.figure())

    xm,ym,zm=coords.max(axis=0)
    xmi,ymi,zmi =coords.min(axis=0)

    for nodes in topo:
        tri = a3d.art3d.Poly3DCollection([coords[nodes,:3]])
        tri.set_color(colors.rgb2hex([0.9,0.6,0.]))
        tri.set_edgecolor('k')
        ax.add_collection3d(tri)

    ax.set_xlim3d([xmi,xm])
    ax.set_ylim3d([ymi,ym])
    ax.set_zlim3d([zmi,zm])

    plt.show()
binarySTLreader.py 文件源码 项目:BinarySTLfileReader 作者: sukhbinder 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def ShowSTLFile(v1,v2,v3):
    '''Plots the STL files, give vertices v1,v2,v3'''
    ax = a3d.Axes3D(plt.figure())  

    xm,ym,zm=v1.max(axis=0)
    xmi,ymi,zmi =v2.min(axis=0)

    for i in range(v1.shape[0]):
        vtx=np.vstack((v1[i],v2[i],v3[i]))
        tri = a3d.art3d.Poly3DCollection([vtx])
        tri.set_color(colors.rgb2hex([0.9,0.6,0.]))
        tri.set_edgecolor('k')
        ax.add_collection3d(tri)

    ax.set_xlim3d([xmi,xm])
    ax.set_ylim3d([ymi,ym])
    ax.set_zlim3d([zmi,zm])

    plt.show()
test_matplotlib_utilities.py 文件源码 项目:data_utilities 作者: fmv1992 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_plot_3d(self):
        """Plot 3d test."""
        # Test 3d plots.
        self.assert_X_from_iterables(
            self.assertIsInstance,
            # TODO: error prone since colorbars can be added.
            (fig.get_axes()[0] for fig in self.figures_3d),
            itertools.repeat(Axes3D))
        # Test that there is just one axes per figure.
        for i, figure in enumerate(self.figures_3d):
            axes = figure.get_axes()
            if len(axes) != 1:
                # TODO: colorbar may add a second axes.
                pass
                raise ValueError(
                   "Axes has the wrong number of elements: {0} but "
                   "should be 1.".format(len(axes)))
Simulation.py 文件源码 项目:robotics1project 作者: pchorak 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def display(self,angles):
        """
        Plots wireframe models of the Dobot and obstacles.
        """
        arm = DobotModel.get_mesh(angles)

        #fig = plt.figure()
        fig = plt.gcf()
        ax = Axes3D(fig)
        #plt.axis('equal')
        for Ta in arm:
            ax.plot(Ta[[0,1,2,0],0],Ta[[0,1,2,0],1],Ta[[0,1,2,0],2],'b')
        for To in self.obstacles:
            ax.plot(To[[0,1,2,0],0],To[[0,1,2,0],1],To[[0,1,2,0],2],'b')

        r_max = DobotModel.l1 + DobotModel.l2 + DobotModel.d

        plt.xlim([-np.ceil(r_max/np.sqrt(2)),r_max])
        plt.ylim([-r_max,r_max])
        ax.set_zlim(-150, 250)
        ax.view_init(elev=30.0, azim=60.0)
        plt.show()
        return fig
policy_estimation.py 文件源码 项目:ReinforcementLearning 作者: persistforever 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _plot_value_function(self, value_functions, n_iter):
        value_matrix = numpy.zeros((10, 10), dtype='float')
        for stateid in range(len(self.states)):
            dealer_showing, player_state = self.states[stateid].split('#')
            dealer_showing = 0 if dealer_showing == 'A' else int(dealer_showing)-1
            player_state = int(player_state)
            if player_state >= 12 and player_state < 22:
                value_matrix[player_state-12, dealer_showing] = value_functions[stateid]
        fig = plt.figure()
        ax = Axes3D(fig)
        Y, X = numpy.meshgrid(range(10), range(12,22))
        ax.plot_surface(Y, X, value_matrix, rstride=1, cstride=1, cmap='coolwarm')
        ax.set_title('value function in iteration %i' % n_iter)
        ax.set_xlabel('dealer showing')
        ax.set_ylabel('player sum')
        ax.set_zlabel('value function')
        plt.show()
monte_carlo_control.py 文件源码 项目:ReinforcementLearning 作者: persistforever 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _plot_value_function(self, value_functions, n_iter):
        value_matrix = numpy.zeros((10, 10), dtype='float')
        for stateid in range(len(self.states)):
            dealer_showing, player_state = self.states[stateid].split('#')
            dealer_showing = 0 if dealer_showing == 'A' else int(dealer_showing)-1
            player_state = int(player_state)
            if player_state >= 12 and player_state < 22:
                value_matrix[player_state-12, dealer_showing] = value_functions[stateid]
        fig = plt.figure()
        ax = Axes3D(fig)
        Y, X = numpy.meshgrid(range(10), range(12,22))
        ax.plot_surface(Y, X, value_matrix, rstride=1, cstride=1, cmap='coolwarm')
        ax.set_title('value function in iteration %i' % n_iter)
        ax.set_xlabel('dealer showing')
        ax.set_ylabel('player sum')
        ax.set_zlabel('value function')
        plt.show()
Radiation.py 文件源码 项目:und_Sophie_2016 作者: SophieTh 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def plot_ring(self, Nb_pts=201):
        import matplotlib.pyplot as plt
        from mpl_toolkits.mplot3d import Axes3D
        if self.X is None or self.Y is None:
            raise Exception(" X and Y must be grid or a list for plotting")
        fig = plt.figure()
        ax = fig.gca(projection='3d')
        X = np.array([self.X[0]])
        Y = np.array([self.Y[0]])
        intensity = np.array([self.intensity[0]])
        ax.plot(X, Y, intensity, '^', label='ring number 0')
        ring_number = 1
        while (ring_number * Nb_pts < len(self.X)):
            X = self.X[(ring_number - 1) * Nb_pts + 1:ring_number * Nb_pts + 1]
            Y = self.Y[(ring_number - 1) * Nb_pts + 1:ring_number * Nb_pts + 1]
            intensity = self.intensity[(ring_number - 1) * Nb_pts + 1:ring_number * Nb_pts + 1]
            ax.plot(X, Y, intensity, label='ring number %d' % ring_number)
            ring_number += 1
        ax.set_xlabel("X")
        ax.set_ylabel('Y')
        ax.set_zlabel("itensity")
        ax.legend()
        plt.show()
plotter.py 文件源码 项目:AIclass 作者: mttk 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def plot_3d(X, y_actual, y_predicted=None):
    fig = plt.figure()

    if y_predicted is None:
        plt.title("Predicted vs actual function values")
    else: 
        plt.title("Approximated function samples")

    ax = Axes3D(fig)

    ax.view_init(elev=30, azim=70)

    scatter_actual = ax.scatter(X[:,0], X[:,1], y_actual, c='g', depthshade=False)
    if not y_predicted is None:
        scatter_predicted = ax.scatter(X[:,0], X[:,1], y_predicted, c='b', depthshade=False)

    if y_predicted is None:
        plt.legend((scatter_actual, scatter_predicted),
                ('Actual values', 'Predicted values'),
                scatterpoints = 1)

    plt.grid()
    plt.show()
plotter.py 文件源码 项目:AIclass 作者: mttk 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plot_surface_3d(X, y_actual, NN):
    fig = plt.figure()
    plt.title("Predicted function with marked training samples")
    ax = Axes3D(fig)

    size = X.shape[0]

    ax.view_init(elev=30, azim=70)
    scatter_actual = ax.scatter(X[:,0], X[:,1], y_actual, c='g', depthshade=False)

    x0s = sorted(X[:,0])
    x1s = sorted(X[:,1])

    x0s, x1s = np.meshgrid(x0s, x1s)
    predicted_surface = np.zeros((size, size))

    for i in range(size):
        for j in range(size):
            predicted_surface[i,j] = NN.output(np.array([x0s[i,j], x1s[i,j]]))

    surf = ax.plot_surface(x0s, x1s, predicted_surface, rstride=2, cstride=2, linewidth=0, cmap=cm.coolwarm, alpha=0.5)

    plt.grid()
    plt.show()
plotter.py 文件源码 项目:AIclass 作者: mttk 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def plot_3d(X, y_actual, y_predicted=None):
    fig = plt.figure()

    if y_predicted is None:
        plt.title("Predicted vs actual function values")
    else: 
        plt.title("Approximated function samples")

    ax = Axes3D(fig)

    ax.view_init(elev=30, azim=70)

    scatter_actual = ax.scatter(X[:,0], X[:,1], y_actual, c='g', depthshade=False)
    if not y_predicted is None:
        scatter_predicted = ax.scatter(X[:,0], X[:,1], y_predicted, c='b', depthshade=False)

    if y_predicted is None:
        plt.legend((scatter_actual, scatter_predicted),
                ('Actual values', 'Predicted values'),
                scatterpoints = 1)

    plt.grid()
    plt.show()
plotter.py 文件源码 项目:AIclass 作者: mttk 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plot_surface_3d(X, y_actual, NN):
    fig = plt.figure()
    plt.title("Predicted function with marked training samples")
    ax = Axes3D(fig)

    size = X.shape[0]

    ax.view_init(elev=30, azim=70)
    scatter_actual = ax.scatter(X[:,0], X[:,1], y_actual, c='g', depthshade=False)

    x0s = sorted(X[:,0])
    x1s = sorted(X[:,1])

    x0s, x1s = np.meshgrid(x0s, x1s)
    predicted_surface = np.zeros((size, size))

    for i in range(size):
        for j in range(size):
            predicted_surface[i,j] = NN.output(np.array([x0s[i,j], x1s[i,j]]))

    surf = ax.plot_surface(x0s, x1s, predicted_surface, rstride=2, cstride=2, linewidth=0, cmap=cm.coolwarm, alpha=0.5)

    plt.grid()
    plt.show()
6.LDA.py 文件源码 项目:ML-note 作者: JasonK93 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def plot_LDA(converted_X,y):
    '''
    plot the graph after transfer
    :param converted_X: train data after transfer
    :param y: train_value
    :return:  None
    '''
    from mpl_toolkits.mplot3d import Axes3D
    fig=plt.figure()
    ax=Axes3D(fig)
    colors='rgb'
    markers='o*s'
    for target,color,marker in zip([0,1,2],colors,markers):
        pos=(y==target).ravel()
        X=converted_X[pos,:]
        ax.scatter(X[:,0], X[:,1], X[:,2],color=color,marker=marker,
            label="Label {0}".format(target))
    ax.legend(loc="best")
    fig.suptitle("Iris After LDA")
    plt.show()
echoDoc0.1.py 文件源码 项目:EchoBurst 作者: TyJK 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def plotModel3D(vectorFile, numClusters):
    # http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_iris.html

    model = Doc2Vec.load("Models\\" + vectorFile)
    docVecs = model.docvecs.doctag_syn0
    reduced_data = PCA(n_components=10).fit_transform(docVecs)
    kmeans = KMeans(init='k-means++', n_clusters=numClusters, n_init=10)

    fig = plt.figure(1, figsize=(10, 10))
    ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)
    kmeans.fit(reduced_data)
    labels = kmeans.labels_

    ax.scatter(reduced_data[:, 5], reduced_data[:, 2], reduced_data[:, 3], c=labels.astype(np.float))
    ax.w_xaxis.set_ticklabels([])
    ax.w_yaxis.set_ticklabels([])
    ax.w_zaxis.set_ticklabels([])
    # Plot the ground truth
    fig = plt.figure(1, figsize=(10, 10))
    plt.clf()
    ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)
    plt.cla()
    ax.scatter(reduced_data[:, 5], reduced_data[:, 2], reduced_data[:, 3], c=labels.astype(np.float))
    ax.w_xaxis.set_ticklabels([])
    ax.w_yaxis.set_ticklabels([])
    ax.w_zaxis.set_ticklabels([])
    plt.show()
plot_ols_3d.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def plot_figs(fig_num, elev, azim, X_train, clf):
    fig = plt.figure(fig_num, figsize=(4, 3))
    plt.clf()
    ax = Axes3D(fig, elev=elev, azim=azim)

    ax.scatter(X_train[:, 0], X_train[:, 1], y_train, c='k', marker='+')
    ax.plot_surface(np.array([[-.1, -.1], [.15, .15]]),
                    np.array([[-.1, .15], [-.1, .15]]),
                    clf.predict(np.array([[-.1, -.1, .15, .15],
                                          [-.1, .15, -.1, .15]]).T
                                ).reshape((2, 2)),
                    alpha=.5)
    ax.set_xlabel('X_1')
    ax.set_ylabel('X_2')
    ax.set_zlabel('Y')
    ax.w_xaxis.set_ticklabels([])
    ax.w_yaxis.set_ticklabels([])
    ax.w_zaxis.set_ticklabels([])

#Generate the three different figures from different views
CuboctSTL_v0.py 文件源码 项目:CuboctSTL 作者: figlax 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def preview_mesh(*args):
    """
    This function plots numpy stl mesh objects entered into args. Note it will scale the preview plot based on the last mesh
    object entered.
    :param args: mesh objects to plot  ex.- preview_mesh(mesh1, mesh2, mesh3)
    :return:
    """
    print ("...preparing preview...")
    # Create a new plot
    figure = pyplot.figure()
    axes = mplot3d.Axes3D(figure)
    for mesh_obj in args:
        axes.add_collection3d(mplot3d.art3d.Poly3DCollection(mesh_obj.vectors))

    # Auto scale to the mesh size. Note it will choose the last mesh
    scale = mesh_obj.points.flatten(-1)
    axes.auto_scale_xyz(scale, scale, scale)

    # Show the plot to the screen
    pyplot.show()
test_voxelfix.py 文件源码 项目:CuboctSTL 作者: figlax 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def preview_mesh(*args):
    """
    This function plots numpy stl mesh objects entered into args. Note it will scale the preview plot based on the last mesh
    object entered.
    :param args: mesh objects to plot  ex.- preview_mesh(mesh1, mesh2, mesh3)
    :return:
    """
    print ("...preparing preview...")
    # Create a new plot
    figure = pyplot.figure()
    axes = mplot3d.Axes3D(figure)
    for mesh_obj in args:
        axes.add_collection3d(mplot3d.art3d.Poly3DCollection(mesh_obj.vectors))

    # Auto scale to the mesh size. Note it will choose the last mesh
    scale = mesh_obj.points.flatten(-1)
    axes.auto_scale_xyz(scale, scale, scale)

    # Show the plot to the screen
    pyplot.show()
visualization.py 文件源码 项目:Default-Credit-Card-Prediction 作者: AlexPnt 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def visualize_pca3D(X,y):
    """
    Visualize the first three principal components

    Keyword arguments:
    X -- The feature vectors
    y -- The target vector
    """
    pca = PCA(n_components = 3)
    principal_components = pca.fit_transform(X)

    fig = pylab.figure()
    ax = Axes3D(fig)
    # azm=30
    # ele=30
    # ax.view_init(azim=azm,elev=ele)

    palette = sea.color_palette()
    ax.scatter(principal_components[y==0, 0], principal_components[y==0, 1], principal_components[y==0, 2], label="Paid", alpha=0.5, 
                edgecolor='#262626', c=palette[1], linewidth=0.15)
    ax.scatter(principal_components[y==1, 0], principal_components[y==1, 1], principal_components[y==1, 2],label="Default", alpha=0.5, 
                edgecolor='#262626''', c=palette[2], linewidth=0.15)

    ax.legend()
    plt.show()
matplotlib_test.py 文件源码 项目:Python_Study 作者: thsheep 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def threeD():
    fig = figure()
    ax = Axes3D(fig)
    X = np.arange(-4, 4, 0.25)
    Y = np.arange(-4, 4, 0.25)
    X, Y = np.meshgrid(X, Y)
    R = np.sqrt(X ** 2 + Y ** 2)
    Z = np.sin(R)

    ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='hot')
    show()
mpl_animate.py 文件源码 项目:phoebe2 作者: phoebe-project 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def apply_limits(ax, pad=0.1):
    """
    apply the stored phoebe_limits to an axes, applying an additional padding

    :parameter ax:
    :parameter float pad: ratio of the range to apply as a padding (default: 0.1)
    """

    #try:
    if True:
        xlim = ax._phoebe_xlim
        ylim = ax._phoebe_ylim
        zlim = ax._phoebe_zlim
    #except AttributeError:
    #    return ax

    # initialize new lists for the padded limits.  We don't want to directly
    # edit xlim, ylim, zlim because we need padding based off the originals
    # and we don't want to have to worry about deepcopying issues
    xlim_pad = xlim[:]
    ylim_pad = ylim[:]
    zlim_pad = zlim[:]

    xlim_pad[0] = xlim[0] - pad*(xlim[1]-xlim[0])
    xlim_pad[1] = xlim[1] + pad*(xlim[1]-xlim[0])
    ylim_pad[0] = ylim[0] - pad*(ylim[1]-ylim[0])
    ylim_pad[1] = ylim[1] + pad*(ylim[1]-ylim[0])
    zlim_pad[0] = zlim[0] - pad*(zlim[1]-zlim[0])
    zlim_pad[1] = zlim[1] + pad*(zlim[1]-zlim[0])

    if isinstance(ax, Axes3D):
        ax.set_xlim3d(xlim_pad)
        ax.set_ylim3d(ylim_pad)
        ax.set_zlim3d(zlim_pad)
    else:
        ax.set_xlim(xlim_pad)
        ax.set_ylim(ylim_pad)

    return ax
plot_3d_color_spaces.py 文件源码 项目:udacity-detecting-vehicles 作者: wonjunee 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def plot3d(pixels, colors_rgb,
        axis_labels=list("RGB"), axis_limits=[(0, 255), (0, 255), (0, 255)]):
    """Plot pixels in 3D."""

    # Create figure and 3D axes
    fig = plt.figure(figsize=(8, 8))
    ax = Axes3D(fig)

    # Set axis limits
    ax.set_xlim(*axis_limits[0])
    ax.set_ylim(*axis_limits[1])
    ax.set_zlim(*axis_limits[2])

    # Set axis labels and sizes
    ax.tick_params(axis='both', which='major', labelsize=14, pad=8)
    ax.set_xlabel(axis_labels[0], fontsize=16, labelpad=16)
    ax.set_ylabel(axis_labels[1], fontsize=16, labelpad=16)
    ax.set_zlabel(axis_labels[2], fontsize=16, labelpad=16)

    # Plot pixel values with colors given in colors_rgb
    ax.scatter(
        pixels[:, :, 0].ravel(),
        pixels[:, :, 1].ravel(),
        pixels[:, :, 2].ravel(),
        c=colors_rgb.reshape((-1, 3)), edgecolors='none')

    return ax  # return Axes3D object for further manipulation


# Read a color image
classifier.py 文件源码 项目:Clustering 作者: Ram81 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plot3D(data, output_labels_3d, centroids):
    '''
        Creating a 3d Plot of the dataset
    ''' 
    fig = plt.figure(3)
    ax = Axes3D(fig)

    for i in range(len(output_labels_3d)):
        if output_labels_3d[i] == 0:
            ax.scatter(data[i, 0], data[i, 1], data[i, 2], s = 20, c = 'k')
        elif output_labels_3d[i] == 1:
            ax.scatter(data[i, 0], data[i, 1], data[i, 2], s = 20, c = 'r')
        elif output_labels_3d[i] == 2:
            ax.scatter(data[i, 0], data[i, 1], data[i, 2], s = 20, c = 'b')
        elif output_labels_3d[i] == 3:
            ax.scatter(data[i, 0], data[i, 1], data[i, 2], s = 20, c = 'c')
        elif output_labels_3d[i] == 4:
            ax.scatter(data[i, 0], data[i, 1], data[i, 2], s = 20, c = 'g')
        elif output_labels_3d[i] == 5:
            ax.scatter(data[i, 0], data[i, 1], data[i, 2], s = 20, c = 'y')
        elif output_labels_3d[i] == 6:
            ax.scatter(data[i, 0], data[i, 1], data[i, 2], s = 20, c = 'm')
        elif output_labels_3d[i] == 7:
            ax.scatter(data[i, 0], data[i, 1], data[i, 2], s = 25, c = 'y')
        elif output_labels_3d[i] == 8:
            ax.scatter(data[i, 0], data[i, 1], data[i, 2], s = 25, c = 'b')
        elif output_labels_3d[i] == 9:
            ax.scatter(data[i, 0], data[i, 1], data[i, 2], s = 25, c = 'k')
        elif output_labels_3d[i] == 10:
            ax.scatter(data[i, 0], data[i, 1], data[i, 2], s = 25, c = 'm')
        elif output_labels_3d[i] == 11:
            ax.scatter(data[i, 0], data[i, 1], data[i, 2], s = 25, c = 'g')

    ax.scatter(centroids[:, 0], centroids[:, 1], centroids[:, 2], s = 150, c = 'r', marker = 'x', linewidth = 5)

    plt.show()

    return
mdp.py 文件源码 项目:ReinforcementLearning 作者: persistforever 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _plot_value_function(self, value_function, n_iter):
        value_matrix = numpy.zeros((self.max_car+1, self.max_car+1), dtype='float')
        for stateid in range(len(self.states)):
            state = [int(t) for t in self.states[stateid].split('#')]
            value_matrix[state[0], state[1]] = value_function[stateid]
        fig = plt.figure()
        ax = Axes3D(fig)
        X, Y = numpy.meshgrid(range(self.max_car+1), range(self.max_car+1))
        ax.plot_surface(Y, X, value_matrix, rstride=1, cstride=1, cmap='coolwarm')
        ax.set_title('value function in iteration %i' % n_iter)
        ax.set_xlabel('#cars at A')
        ax.set_ylabel('#cars at B')
        ax.set_zlabel('value function')
        # plt.show()
        fig.savefig('experiments/value%i' % n_iter)
dataIO.py 文件源码 项目:tf-3dgan 作者: meetshah1995 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plotFromVF(vertices, faces):
    input_vec = mesh.Mesh(np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype))
    for i, f in enumerate(faces):
        for j in range(3):
            input_vec.vectors[i][j] = vertices[f[j],:]
    figure = plt.figure()
    axes = mplot3d.Axes3D(figure)
    axes.add_collection3d(mplot3d.art3d.Poly3DCollection(input_vec.vectors))
    scale = input_vec.points.flatten(-1)
    axes.auto_scale_xyz(scale, scale, scale)
    plt.show()
dataIO.py 文件源码 项目:tf-3dgan 作者: meetshah1995 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def plotFromVertices(vertices):
    figure = plt.figure()
    axes = mplot3d.Axes3D(figure)
    axes.scatter(vertices.T[0,:],vertices.T[1,:],vertices.T[2,:])
    plt.show()
test_fcn.py 文件源码 项目:huaat_ml_dl 作者: ieee820 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def draw3D(X, Y, Z, angle):
    fig = plt.figure(figsize=(15,7))
    ax = Axes3D(fig)
    ax.view_init(angle[0], angle[1])
    ax.plot_surface(X,Y,Z,rstride=1, cstride=1, cmap='rainbow')
    plt.imshow
Radiation.py 文件源码 项目:und_Sophie_2016 作者: SophieTh 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plot(self,title="",label=""):
        import matplotlib.pyplot as plt
        from mpl_toolkits.mplot3d import Axes3D

        if self.distance == None:
            zlabel = "Flux (phot/s/0.1%bw/mrad2)"
            xlabel = 'X [rad]'
            ylabel = 'Y [rad]'
        else:
            zlabel = "Flux (phot/s/0.1%bw/mm2)"
            xlabel = 'X [m]'
            ylabel = 'Y [m]'

        if self.X is None or self.Y is None:
            raise Exception(" X and Y must be array for plotting")
        if self.X.shape != self.Y.shape:
            raise Exception(" X and Y must have the same shape")
        fig = plt.figure()
        if len(self.X.shape) ==2 :
            ax = Axes3D(fig)
            ax.plot_surface(self.X, self.Y, self.intensity, rstride=1, cstride=1,cmap='hot_r')
        else :
            ax = fig.gca(projection='3d')
            ax.plot(self.X, self.Y, self.intensity, label=label)
            ax.legend()
        ax.set_xlabel(xlabel)
        ax.set_ylabel(ylabel)
        ax.set_zlabel(zlabel)

        plt.title(title)
        plt.show()
strategy_test.py 文件源码 项目:hyper-engine 作者: maxim5 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def plot_2d(self, f, a, b, grid_size=200):
    grid_x = np.linspace(a[0], b[0], num=grid_size).reshape((-1, 1))
    grid_y = np.linspace(a[1], b[1], num=grid_size).reshape((-1, 1))
    x, y = np.meshgrid(grid_x, grid_y)

    merged = np.stack([x.flatten(), y.flatten()])
    z = f(merged).reshape(x.shape)

    swap = np.swapaxes(merged, 0, 1)
    mu, sigma = self.utility.mean_and_std(swap)
    mu = mu.reshape(x.shape)
    sigma = sigma.reshape(x.shape)

    points = np.asarray(self.points)
    xs = points[:, 0]
    ys = points[:, 1]
    zs = f(np.swapaxes(points, 0, 1))

    fig = plt.figure()
    ax = Axes3D(fig)
    ax.plot_surface(x, y, z, color='black', label='f', alpha=0.7,
                    linewidth=0, antialiased=False)
    ax.plot_surface(x, y, mu, color='red', label='mu', alpha=0.5)
    ax.plot_surface(x, y, mu + sigma, color='blue', label='mu+sigma', alpha=0.3)
    ax.plot_surface(x, y, mu - sigma, color='blue', alpha=0.3)
    ax.scatter(xs, ys, zs, color='red', marker='o', s=100)
    # plt.legend()
    plt.show()
Exercise13_2.py 文件源码 项目:computationalphysics_N2013301020050 作者: ShixingWang 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def plot(self):
        x=np.linspace(-1,1,self.L)
        y=np.linspace(-1,1,self.L)
        X,Y=np.meshgrid(x,y)
        fig=plt.figure()
        ax=Axes3D(fig)
        ax.plot_surface(X, Y, self.V, rstride=5, cstride=5, cmap='hot')
example1.py 文件源码 项目:pySA 作者: kjzhang9 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def run_draw():
    #init = -sys.maxsize # for maximun case

    targ = SimAnneal(target_text='max')
    init = -sys.maxsize # for maximun case
    #init = sys.maxsize # for minimun case
    xyRange = [[-2, 2], [-2, 2]]
    xRange = [[0, 10]]
    t_start = time()

    calculate = OptSolution(Markov_chain=1000, result=init, val_nd=[0,0])
    output = calculate.soulution(SA_newV=targ.newVar, SA_preV=targ.preVar, SA_juge=targ.juge, 
                                juge_text='max',ValueRange=xyRange, func=func2)
    t_end = time()
    #print(city_pos)
    print('Running %.4f seconds' %(t_end-t_start))

    # plot animation
    fig = plt.figure()
    ax = Axes3D(fig)
    xv = np.linspace(xyRange[0][0], xyRange[0][1], 200)
    yv = np.linspace(xyRange[1][0], xyRange[1][1], 200)
    xv, yv = np.meshgrid(xv, yv)
    zv = func2([xv, yv])
    ax.plot_surface(xv, yv, zv, rstride=1, cstride=1, cmap='GnBu', alpha=1)
    #dot = ax.scatter(0, 0, 0, 'ro')
    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.set_zlabel('Z')
    x, y, z = output[0][0], output[0][1], output[1]
    ax.scatter(x, y, z, c='r', marker='o')

    plt.savefig('SA_min0.png')
    plt.show()


问题


面经


文章

微信
公众号

扫码关注公众号