def plot_weight_matrix(Z, outname, save=True):
num = Z.shape[0]
fig = plt.figure(1, (80, 80))
fig.subplots_adjust(left=0.05, right=0.95)
grid = AxesGrid(fig, (1, 4, 2), # similar to subplot(142)
nrows_ncols=(int(np.ceil(num / 10.)), 10),
axes_pad=0.04,
share_all=True,
label_mode="L",
)
for i in range(num):
im = grid[i].imshow(Z[i, :, :, :].mean(
axis=0), cmap='gray')
for i in range(grid.ngrids):
grid[i].axis('off')
for cax in grid.cbar_axes:
cax.toggle_label(False)
if save:
fig.savefig(outname, bbox_inches='tight')
fig.clear()
python类AxesGrid()的实例源码
def plot3(self):
fig = pylab.figure(figsize=(8,4))
axes = AxesGrid(fig, 111,nrows_ncols = (1, 3),axes_pad=0.1,
cbar_mode='each',cbar_pad=0,cbar_size='5%',
cbar_location='top',share_all=True)
for ax in axes:
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
self.drawImage(axes[0])
self.drawTS(axes[1])
#self.drawStellarDensity(axes[1])
self.drawMask(axes[2])
return fig,axes
def plot4(self):
fig = pylab.figure(figsize=(8,8))
axes = AxesGrid(fig, 111,nrows_ncols = (2, 2),axes_pad=0.25,
cbar_mode='each',cbar_pad=0,cbar_size='5%',
share_all=True,aspect=True,
label_mode='L')
#fig,axes = plt.subplots(2,2)
#axes = axes.flatten()
#for ax in axes:
# ax.get_xaxis().set_visible(False)
# ax.get_yaxis().set_visible(False)
#plt.sca(axes[0]); self.drawImage(axes[0])
#plt.sca(axes[1]); self.drawStellarDensity(axes[1])
#plt.sca(axes[2]); self.drawMask(axes[2])
#plt.sca(axes[3]); self.drawTS(axes[3])
try: plt.sca(axes[0]); self.drawImage()
except IOError as e: logger.warn(str(e))
plt.sca(axes[1]); self.drawStellarDensity()
plt.sca(axes[2]); self.drawMask()
try: plt.sca(axes[3]); self.drawTS()
except IOError as e: logger.warn(str(e))
axes[0].set_xlim(self.radius,-self.radius)
axes[0].set_ylim(-self.radius,self.radius)
return fig,axes
def plotKernel(kernel):
fig = plt.figure()
axes = AxesGrid(fig, 111, nrows_ncols = (1,1),
cbar_mode='none',cbar_pad=0,cbar_size='5%',
cbar_location='top', share_all=True)
drawKernel(axes[0],kernel)
def plotDistance(self):
filename = self.config.mergefile
logger.debug("Opening %s..."%filename)
f = pyfits.open(filename)
pixels,values = f[1].data['PIXEL'],2*f[1].data['LOG_LIKELIHOOD']
if values.ndim == 1: values = values.reshape(-1,1)
distances = f[2].data['DISTANCE_MODULUS']
if distances.ndim == 1: distances = distances.reshape(-1,1)
ts_map = healpy.UNSEEN * numpy.ones(healpy.nside2npix(self.nside))
ndim = len(distances)
nrows = int(numpy.sqrt(ndim))
ncols = ndim // nrows + (ndim%nrows > 0)
fig = pylab.figure()
axes = AxesGrid(fig, 111, nrows_ncols = (nrows, ncols),axes_pad=0,
label_mode='1', cbar_mode='single',cbar_pad=0,cbar_size='5%',
share_all=True,add_all=False)
images = []
for i,val in enumerate(values.T):
ts_map[pixels] = val
im = healpy.gnomview(ts_map,**self.gnom_kwargs)
pylab.close()
images.append(im)
data = numpy.array(images); mask = (data == healpy.UNSEEN)
images = numpy.ma.array(data=data,mask=mask)
vmin = numpy.ma.min(images)
vmax = numpy.ma.max(images)
for i,val in enumerate(values.T):
ax = axes[i]
im = ax.imshow(images[i],origin='bottom',vmin=vmin,vmax=vmax)
ax.cax.colorbar(im)
#ax.annotate(r"$\mu = %g$"%distances[i],**self.label_kwargs)
ax.annotate(r"$d = %.0f$ kpc"%mod2dist(distances[i]),**self.label_kwargs)
ax.axis["left"].major_ticklabels.set_visible(False)
ax.axis["bottom"].major_ticklabels.set_visible(False)
fig.add_axes(ax)
fig.add_axes(ax.cax)
return fig,axes