def evaluate(data_source):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(eval_batch_size)
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, evaluation=True)
output, hidden = model(data, hidden)
output_flat = output.view(-1, ntokens)
total_loss += len(data) * criterion(output_flat, targets).data
hidden = repackage_hidden(hidden)
return total_loss[0] / len(data_source)
python类init_hidden()的实例源码
def evaluate(data_source):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(eval_batch_size)
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, evaluation=True)
output, hidden = model(data, hidden)
output_flat = output.view(-1, ntokens)
total_loss += len(data) * criterion(output_flat, targets).data
hidden = repackage_hidden(hidden)
return total_loss[0] / len(data_source)
def train():
# Turn on training mode which enables dropout.
model.train()
total_loss = 0
start_time = time.time()
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(args.batch_size)
for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
data, targets = get_batch(train_data, i)
# Starting each batch, we detach the hidden state from how it was previously produced.
# If we didn't, the model would try backpropagating all the way to start of the dataset.
hidden = repackage_hidden(hidden)
model.zero_grad()
output, hidden = model(data, hidden)
loss = criterion(output.view(-1, ntokens), targets)
loss.backward()
# `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
torch.nn.utils.clip_grad_norm(model.parameters(), args.clip)
for p in model.parameters():
p.data.add_(-lr, p.grad.data)
total_loss += loss.data
if batch % args.log_interval == 0 and batch > 0:
cur_loss = total_loss[0] / args.log_interval
elapsed = time.time() - start_time
print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
'loss {:5.2f} | ppl {:8.2f}'.format(
epoch, batch, len(train_data) // args.bptt, lr,
elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
total_loss = 0
start_time = time.time()
# Loop over epochs.
def evaluate(data_source):
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(eval_batch_size)
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, evaluation=True)
output, hidden = model(data, hidden)
output_flat = output.view(-1, ntokens)
total_loss += len(data) * criterion(output_flat, targets).data
hidden = repackage_hidden(hidden)
return total_loss[0] / len(data_source)
def train():
total_loss = 0
start_time = time.time()
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(args.batch_size)
for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
data, targets = get_batch(train_data, i)
hidden = repackage_hidden(hidden)
model.zero_grad()
output, hidden = model(data, hidden)
loss = criterion(output.view(-1, ntokens), targets)
loss.backward()
clipped_lr = lr * clip_gradient(model, args.clip)
for p in model.parameters():
p.data.add_(-clipped_lr, p.grad.data)
total_loss += loss.data
if batch % args.log_interval == 0 and batch > 0:
cur_loss = total_loss[0] / args.log_interval
elapsed = time.time() - start_time
print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
'loss {:5.2f} | ppl {:8.2f}'.format(
epoch, batch, len(train_data) // args.bptt, lr,
elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
total_loss = 0
start_time = time.time()
# Loop over epochs.
def evaluate(data_source, batch_size=10):
# Turn on evaluation mode which disables dropout.
if args.model == 'QRNN': model.reset()
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(batch_size)
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, args, evaluation=True)
output, hidden = model(data, hidden)
output_flat = output.view(-1, ntokens)
total_loss += len(data) * criterion(output_flat, targets).data
hidden = repackage_hidden(hidden)
return total_loss[0] / len(data_source)
def evaluate(data_source, batch_size=10):
# Turn on evaluation mode which disables dropout.
model.eval()
if args.model == 'QRNN': model.reset()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(batch_size)
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, args, evaluation=True)
output, hidden = model(data, hidden)
output_flat = output.view(-1, ntokens)
total_loss += len(data) * criterion(output_flat, targets).data
hidden = repackage_hidden(hidden)
return total_loss[0] / len(data_source)
def evaluate(data_source):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(eval_batch_size)
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, evaluation=True)
output, hidden = model(data, hidden)
output_flat = output.view(-1, ntokens)
total_loss += len(data) * criterion(output_flat, targets).data
hidden = repackage_hidden(hidden)
return total_loss[0] / len(data_source)
def train():
# Turn on training mode which enables dropout.
model.train()
total_loss = 0
start_time = time.time()
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(args.batch_size)
for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
data, targets = get_batch(train_data, i)
# Starting each batch, we detach the hidden state from how it was previously produced.
# If we didn't, the model would try backpropagating all the way to start of the dataset.
hidden = repackage_hidden(hidden)
model.zero_grad()
output, hidden = model(data, hidden)
loss = criterion(output.view(-1, ntokens), targets)
loss.backward()
# `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
torch.nn.utils.clip_grad_norm(model.parameters(), args.clip)
for p in model.parameters():
p.data.add_(-lr, p.grad.data)
total_loss += loss.data
if batch % args.log_interval == 0 and batch > 0:
cur_loss = total_loss[0] / args.log_interval
elapsed = time.time() - start_time
print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
'loss {:5.2f} | ppl {:8.2f}'.format(
epoch, batch, len(train_data) // args.bptt, lr,
elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
total_loss = 0
start_time = time.time()
# Loop over epochs.
def train():
# Turn on training mode which enables dropout.
if args.model == 'QRNN': model.reset()
total_loss = 0
start_time = time.time()
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(args.batch_size)
batch, i = 0, 0
while i < train_data.size(0) - 1 - 1:
bptt = args.bptt if np.random.random() < 0.95 else args.bptt / 2.
# Prevent excessively small or negative sequence lengths
seq_len = max(5, int(np.random.normal(bptt, 5)))
# There's a very small chance that it could select a very long sequence length resulting in OOM
seq_len = min(seq_len, args.bptt + 10)
lr2 = optimizer.param_groups[0]['lr']
optimizer.param_groups[0]['lr'] = lr2 * seq_len / args.bptt
model.train()
data, targets = get_batch(train_data, i, args, seq_len=seq_len)
# Starting each batch, we detach the hidden state from how it was previously produced.
# If we didn't, the model would try backpropagating all the way to start of the dataset.
hidden = repackage_hidden(hidden)
optimizer.zero_grad()
output, hidden, rnn_hs, dropped_rnn_hs = model(data, hidden, return_h=True)
raw_loss = criterion(output.view(-1, ntokens), targets)
loss = raw_loss
# Activiation Regularization
loss = loss + sum(args.alpha * dropped_rnn_h.pow(2).mean() for dropped_rnn_h in dropped_rnn_hs[-1:])
# Temporal Activation Regularization (slowness)
loss = loss + sum(args.beta * (rnn_h[1:] - rnn_h[:-1]).pow(2).mean() for rnn_h in rnn_hs[-1:])
loss.backward()
# `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
torch.nn.utils.clip_grad_norm(model.parameters(), args.clip)
optimizer.step()
total_loss += raw_loss.data
optimizer.param_groups[0]['lr'] = lr2
if batch % args.log_interval == 0 and batch > 0:
cur_loss = total_loss[0] / args.log_interval
elapsed = time.time() - start_time
print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
'loss {:5.2f} | ppl {:8.2f}'.format(
epoch, batch, len(train_data) // args.bptt, optimizer.param_groups[0]['lr'],
elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
total_loss = 0
start_time = time.time()
###
batch += 1
i += seq_len
# Load the best saved model.
def train():
# Turn on training mode which enables dropout.
if args.model == 'QRNN': model.reset()
total_loss = 0
start_time = time.time()
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(args.batch_size)
batch, i = 0, 0
while i < train_data.size(0) - 1 - 1:
bptt = args.bptt if np.random.random() < 0.95 else args.bptt / 2.
# Prevent excessively small or negative sequence lengths
seq_len = max(5, int(np.random.normal(bptt, 5)))
# There's a very small chance that it could select a very long sequence length resulting in OOM
# seq_len = min(seq_len, args.bptt + 10)
lr2 = optimizer.param_groups[0]['lr']
optimizer.param_groups[0]['lr'] = lr2 * seq_len / args.bptt
model.train()
data, targets = get_batch(train_data, i, args, seq_len=seq_len)
# Starting each batch, we detach the hidden state from how it was previously produced.
# If we didn't, the model would try backpropagating all the way to start of the dataset.
hidden = repackage_hidden(hidden)
optimizer.zero_grad()
output, hidden, rnn_hs, dropped_rnn_hs = model(data, hidden, return_h=True)
raw_loss = criterion(output.view(-1, ntokens), targets)
loss = raw_loss
# Activiation Regularization
loss = loss + sum(args.alpha * dropped_rnn_h.pow(2).mean() for dropped_rnn_h in dropped_rnn_hs[-1:])
# Temporal Activation Regularization (slowness)
loss = loss + sum(args.beta * (rnn_h[1:] - rnn_h[:-1]).pow(2).mean() for rnn_h in rnn_hs[-1:])
loss.backward()
# `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
torch.nn.utils.clip_grad_norm(model.parameters(), args.clip)
optimizer.step()
total_loss += raw_loss.data
optimizer.param_groups[0]['lr'] = lr2
if batch % args.log_interval == 0 and batch > 0:
cur_loss = total_loss[0] / args.log_interval
elapsed = time.time() - start_time
print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
'loss {:5.2f} | ppl {:8.2f}'.format(
epoch, batch, len(train_data) // args.bptt, optimizer.param_groups[0]['lr'],
elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
total_loss = 0
start_time = time.time()
###
batch += 1
i += seq_len
# Loop over epochs.
def evaluate(data_source, batch_size=10, window=args.window):
# Turn on evaluation mode which disables dropout.
if args.model == 'QRNN': model.reset()
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(batch_size)
next_word_history = None
pointer_history = None
for i in range(0, data_source.size(0) - 1, args.bptt):
if i > 0: print(i, len(data_source), math.exp(total_loss / i))
data, targets = get_batch(data_source, i, evaluation=True, args=args)
output, hidden, rnn_outs, _ = model(data, hidden, return_h=True)
rnn_out = rnn_outs[-1].squeeze()
output_flat = output.view(-1, ntokens)
###
# Fill pointer history
start_idx = len(next_word_history) if next_word_history is not None else 0
next_word_history = torch.cat([one_hot(t.data[0], ntokens) for t in targets]) if next_word_history is None else torch.cat([next_word_history, torch.cat([one_hot(t.data[0], ntokens) for t in targets])])
#print(next_word_history)
pointer_history = Variable(rnn_out.data) if pointer_history is None else torch.cat([pointer_history, Variable(rnn_out.data)], dim=0)
#print(pointer_history)
###
# Built-in cross entropy
# total_loss += len(data) * criterion(output_flat, targets).data[0]
###
# Manual cross entropy
# softmax_output_flat = torch.nn.functional.softmax(output_flat)
# soft = torch.gather(softmax_output_flat, dim=1, index=targets.view(-1, 1))
# entropy = -torch.log(soft)
# total_loss += len(data) * entropy.mean().data[0]
###
# Pointer manual cross entropy
loss = 0
softmax_output_flat = torch.nn.functional.softmax(output_flat)
for idx, vocab_loss in enumerate(softmax_output_flat):
p = vocab_loss
if start_idx + idx > window:
valid_next_word = next_word_history[start_idx + idx - window:start_idx + idx]
valid_pointer_history = pointer_history[start_idx + idx - window:start_idx + idx]
logits = torch.mv(valid_pointer_history, rnn_out[idx])
theta = args.theta
ptr_attn = torch.nn.functional.softmax(theta * logits).view(-1, 1)
ptr_dist = (ptr_attn.expand_as(valid_next_word) * valid_next_word).sum(0).squeeze()
lambdah = args.lambdasm
p = lambdah * ptr_dist + (1 - lambdah) * vocab_loss
###
target_loss = p[targets[idx].data]
loss += (-torch.log(target_loss)).data[0]
total_loss += loss / batch_size
###
hidden = repackage_hidden(hidden)
next_word_history = next_word_history[-window:]
pointer_history = pointer_history[-window:]
return total_loss / len(data_source)
# Load the best saved model.