def SavePloat_Voxels(voxels, path, iteration):
voxels = voxels[:8].__ge__(0.5)
fig = plt.figure(figsize=(32, 16))
gs = gridspec.GridSpec(2, 4)
gs.update(wspace=0.05, hspace=0.05)
for i, sample in enumerate(voxels):
x, y, z = sample.nonzero()
ax = plt.subplot(gs[i], projection='3d')
ax.scatter(x, y, z, zdir='z', c='red')
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_aspect('equal')
plt.savefig(path + '/{}.png'.format(str(iteration).zfill(3)), bbox_inches='tight')
plt.close()
with open(path + '/{}.pkl'.format(str(iteration).zfill(3)), "wb") as f:
pickle.dump(voxels, f, protocol=pickle.HIGHEST_PROTOCOL)
python类gridspec()的实例源码
CAE_pytorch.py 文件源码
项目:Contractive_Autoencoder_in_Pytorch
作者: avijit9
项目源码
文件源码
阅读 25
收藏 0
点赞 0
评论 0
def samples_write(self, x, epoch):
_, samples = self.forward(x)
#pdb.set_trace()
samples = samples.data.cpu().numpy()[:16]
fig = plt.figure(figsize=(4, 4))
gs = gridspec.GridSpec(4, 4)
gs.update(wspace=0.05, hspace=0.05)
for i, sample in enumerate(samples):
ax = plt.subplot(gs[i])
plt.axis('off')
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_aspect('equal')
plt.imshow(sample.reshape(28, 28), cmap='Greys_r')
if not os.path.exists('out/'):
os.makedirs('out/')
plt.savefig('out/{}.png'.format(str(epoch).zfill(3)), bbox_inches='tight')
#self.c += 1
plt.close(fig)
def _tile_vertical(imgs, glimpses, boxes, n_objects, fig_size, img_size, colors):
# prepare figure
yy, xx = imgs.shape[0], 1 + n_objects
fig_y, fig_x = fig_size
img_y, img_x = img_size
sy, sx = yy * img_y, n_objects + img_x
gs = gridspec.GridSpec(sy, sx)
fig = plt.figure(figsize=(sx * fig_x, sy * fig_y))
axes = np.empty((yy, xx), dtype=object)
ii = 0
for i in xrange(yy):
axes[i, 0] = plt.subplot(gs[i * img_y:(i + 1) * img_y, :img_x])
for i in xrange(yy):
for j in xrange(1, xx):
axes[i, j] = plt.subplot(gs[i * img_y:(i + 1) * img_y, j + img_x - 1])
# plot
for r in xrange(yy):
axes[r, 0].imshow(imgs[r], 'gray')
for n in xrange(n_objects):
for (k, v), color in izip(boxes.iteritems(), colors):
y, x, h, w = boxes[k]
bbox = Rectangle((x[r, n], y[r, n]), w[r, n], h[r, n],
edgecolor=color, facecolor='none', label=k)
axes[r, 0].add_patch(bbox)
for c in xrange(1, xx):
axes[r, c].imshow(glimpses[r, c - 1], 'gray')
# TODO: improve
len_bbox = len(boxes)
if len_bbox > 1:
x_offset = .25 * len_bbox
axes[-1, 0].legend(bbox_to_anchor=(x_offset, -.75),
ncol=len_bbox, loc='lower center')
return fig, axes
def plot_figure(MA0125_true_points, MA0125_fit_points, MA0078_true_points,
MA0078_fit_points):
"""plot_figure plots the figure comparing the two motifs.
Args:
MA0125_true_points: true motif params as np.array
MA0125_fit_points: fit motif params as np.array
MA0078_true_points: true motif params as np.array
MA0078_fit_points: fit motif params as np.array
"""
### PLOT FIGURE ###
font = {'size' : 18}
matplotlib.rc('font', **font)
matplotlib.rc('xtick', labelsize=13)
matplotlib.rc('ytick', labelsize=13)
f1 = plt.figure(figsize=(13, 6))
gs1 = gridspec.GridSpec(1, 2)
gs1.update(wspace=0.025)
ax1 = plt.subplot(gs1[0])
ax2 = plt.subplot(gs1[1])
plot_comparison(ax1, (MA0125_true_points, MA0125_fit_points), "Nobox (MA0125.1)")
plot_comparison(ax2, (MA0078_true_points, MA0078_fit_points), "Sox-17 (MA0078.1)")
ax1.set_ylabel('Recovered Parameter')
plt.setp(ax2.get_yticklabels(), visible=False)
f1.savefig("2_motifs_synthetic.png",transparent=True)
plt.show()
def plot(samples, figId=None, retBytes=False, shape=None):
if figId is None:
fig = plt.figure(figsize=(4, 4))
else:
fig = plt.figure(figId, figsize=(4,4))
gs = gridspec.GridSpec(4, 4)
gs.update(wspace=0.05, hspace=0.05)
for i, sample in enumerate(samples):
ax = plt.subplot(gs[i])
plt.axis('off')
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_aspect('equal')
if shape and shape[2] == 3:
rescaled = np.clip(sample, 0.0, 1.0)
plt.imshow(rescaled.reshape(*shape))
else:
plt.imshow(sample.reshape(28, 28), cmap='Greys_r')
if retBytes:
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
return fig, buf
return fig
def __init__(self, *args, **kwargs):
super(NuPICPlotOutput, self).__init__(*args, **kwargs)
# Turn matplotlib interactive mode on.
plt.ion()
self.dates = []
self.convertedDates = []
self.value = []
self.rawValue = []
self.allValues = []
self.allRawValues = []
self.predicted = []
self.anomalyScore = []
self.anomalyLikelihood = []
self.actualLine = None
self.rawLine = None
self.predictedLine = None
self.anomalyScoreLine = None
self.anomalyLikelihoodLine = None
self.linesInitialized = False
self._chartHighlights = []
fig = plt.figure(figsize=(16, 10))
gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1])
self._mainGraph = fig.add_subplot(gs[0, 0])
plt.title(self.name)
plt.ylabel('Value')
plt.xlabel('Date')
self._anomalyGraph = fig.add_subplot(gs[1])
plt.ylabel('Percentage')
plt.xlabel('Date')
# Maximizes window
mng = plt.get_current_fig_manager()
mng.resize(800, 600)
plt.tight_layout()
def _tile_horizontal(imgs, glimpses, boxes, n_objects, fig_size, img_size, colors, n_rows):
nt = imgs.shape[0]
size = n_rows, nt // n_rows + int(nt % n_rows != 0)
n_rows = 1 + n_objects
yy, xx = size[0] * n_rows, size[1]
fig_y, fig_x = fig_size
img_y, img_x = img_size
sy, sx = size[0] * (n_objects + img_y), xx * img_x
gs = gridspec.GridSpec(sy, sx)
fig = plt.figure(figsize=(sx * fig_x, sy * fig_y))
axes = np.empty((yy, xx), dtype=object)
ii = 0
for i in xrange(yy):
if i % n_rows == 0:
for j in xrange(xx):
axes[i, j] = plt.subplot(gs[ii:ii + img_y, j * img_x:(j + 1) * img_x])
ii += img_y
else:
for j in xrange(xx):
axes[i, j] = plt.subplot(gs[ii, j * img_x + img_x // 2])
ii += 1
for r in xrange(0, yy, n_rows):
for c in xrange(xx):
idx = (r // n_rows) * xx + c
if idx < nt:
axes[r, c].imshow(imgs[idx], 'gray')
for n in xrange(n_objects):
for (k, v), color in izip(boxes.iteritems(), colors):
y, x, h, w = boxes[k]
bbox = Rectangle((x[idx, n], y[idx, n]), w[idx, n], h[idx, n],
edgecolor=color, facecolor='none', label=k)
axes[r, c].add_patch(bbox)
axes[r + 1 + n, c].imshow(glimpses[idx, n], 'gray')
len_bbox = len(boxes)
if len_bbox > 1:
x_offset = .25 * len_bbox
axes[-2, axes.shape[1] // 2].legend(bbox_to_anchor=(x_offset, -(img_y + 1)),
ncol=len_bbox, loc='lower center')
return fig, axes
def plot_pairs_by_layer_semdeprel_schemes2(df, pairs, majs, mfls, figname, fignum, ymin=0, ymax=100, plot_maj=True):
fig = plt.figure(fignum)
default_size = fig.get_size_inches()
fig.set_size_inches( (default_size[0]*2.5, default_size[1]*2.5) )
outer = gridspec.GridSpec(3, 1, wspace=0.2, hspace=0.5)
xsubs, ysubs = 3, 2
#f, _ = plt.subplots(ysubs, xsubs) #, sharex=True, sharey=True)
#default_size = f.get_size_inches()
#f.set_size_inches( (default_size[0]*1.8, default_size[1]*1.8) )
schemes = df.scheme.unique()
maj_line, mfl_line = '', ''
for s in range(3):
inner = gridspec.GridSpecFromSubplotSpec(2, 3, subplot_spec=outer[s], wspace=0.5, hspace=1)
for i, ((source, target), maj, mfl) in enumerate(zip(pairs[s], majs[s], mfls[s])):
ax = plt.Subplot(fig, inner[i])
df_source_target_scheme = df[(df['source'] == source) & (df['target'] == target) & (df['scheme'] == schemes[s])]
accs = get_accs_from_df(df_source_target_scheme)
layers = df_source_target_scheme.layer.values
hide_xlabel = True if i < (ysubs-1)*xsubs else False
hide_ylabel = True if i % xsubs > 0 else False
maj_line, mfl_line = plot_pair_by_layer(ax, layers, accs, maj, mfl, pretty_lang_names[source] + u"\u2192" + pretty_lang_names[target],
hide_xlabel=hide_xlabel, hide_ylabel=hide_ylabel, ymin=ymin, ymax=ymax, plot_maj=plot_maj, nbins=3, delta_above=False)
fig.add_subplot(ax)
# hide unused axes
#axarr[-1, -1].axis('off')
#for ax in f.axes[len(pairs):-1]:
# ax.axis('off')
# if plot_maj:
# f.legend([maj_line, mfl_line], ['maj', 'mfl'], loc='lower left', bbox_to_anchor=(0.8,0.1), markerscale=1.5, fontsize='medium', frameon=True, title='Legend', edgecolor='black', labelspacing=1)
# else:
# f.legend([mfl_line], ['mfl'], loc='lower left', bbox_to_anchor=(0.8,0.1), markerscale=1.5, fontsize='medium', frameon=True, title='Legend', edgecolor='black', labelspacing=1)
#plt.tight_layout()
plt.savefig(figname)
return fignum + 1
visualizeWeights.py 文件源码
项目:GT-Deep-Learning-for-Sign-Language-Recognition
作者: payamsiyari
项目源码
文件源码
阅读 21
收藏 0
点赞 0
评论 0
def visualize(convA):
if convA == None:
return
#imgY = 10
for i in xrange(convA.shape[1]):
print i
temp = convA[:,i,:,:,:]
print temp.shape
#k = convA.shape[1] * convA.shape[0]
#j = int(round(float(k) / imgY))
gs1 = gridspec.GridSpec(temp.shape[0],temp.shape[1])
gs1.update(left=None, bottom=None, right=None, top=None, wspace=0.1, hspace=0.3)
dim = max(temp.shape[0],temp.shape[1])
plt.figure(figsize=(dim,dim))
for x in xrange(temp.shape[0]):
for y in xrange(temp.shape[1]):
w = temp[x,y,:,:]
ax = plt.subplot(gs1[x,y])
ax.imshow(w,cmap=plt.cm.gist_yarg,interpolation='nearest',aspect='auto')
ax.axis('off')
plt.axis('off')
plt.tick_params(\
axis='x', # changes apply to the x-axis
which='both', # both major and minor ticks are affected
bottom='off', # ticks along the bottom edge are off
top='off', # ticks along the top edge are off
labelbottom='off')
plt.tick_params(\
axis='y', # changes apply to the y-axis
which='both', # both major and minor ticks are affected
left='off',
right='off', # ticks along the top edge are off
labelleft='off')
plt.savefig('./tempImages/test_fig_' + str(i) + '.png', dpi = 100)
plt.close('all')
createGIF()
def plot_component(Y_NN, Lambda_CC, s_Theta_CN, r_Theta_CN, assignments_N,
scale_func=lambda x: np.log(x + 1), filename=None, figsize=None, dpi=None):
plt.figure(figsize=figsize, dpi=dpi)
fontsize = 8
height_ratios = [4, 1]
width_ratios = [1, 4]
N = Y_NN.shape[0]
gs = gridspec.GridSpec(2, 2, height_ratios=height_ratios, width_ratios=width_ratios)
gs.update(wspace=0.025, hspace=0.025)
ax1 = plt.subplot(gs[1, 0]) # Lambda
ax2 = plt.subplot(gs[0, 0]) # s_Theta
ax3 = plt.subplot(gs[1, 1]) # r_Theta
ax4 = plt.subplot(gs[0, 1]) # Y
sns.heatmap(scale_func(Lambda_CC), vmin=0, cmap='Reds', ax=ax1, cbar=False,
xticklabels=range(1, C + 1), yticklabels=range(1, C + 1))
plt.setp(ax1.get_yticklabels(), fontsize=fontsize, weight='bold')
plt.setp(ax1.get_xticklabels(), fontsize=fontsize, weight='bold')
sns.heatmap(scale_func(s_Theta_CN.T), ax=ax2, vmin=0, cmap='Blues',
yticklabels=actors[order_N], cbar=False)
plt.setp(ax2.get_yticklabels(), fontsize=fontsize, rotation=0, weight='bold')
ax2.set_xticklabels([])
sns.heatmap(scale_func(r_Theta_CN), ax=ax3, vmin=0, cmap='Blues',
xticklabels=actors[order_N], cbar=False)
plt.setp(ax3.get_xticklabels(), fontsize=fontsize, rotation=90, weight='bold')
ax3.set_yticklabels([])
sns.heatmap(scale_func(Y_NN), ax=ax4, vmin=0, cmap='Reds', cbar=False)
N = assignments_N.size
last_assignment = assignments_N[0]
for i, assignment in enumerate(assignments_N):
if assignment != last_assignment:
ax4.axvline(i, c='g', lw=2.)
ax4.axhline(N - i, c='g', lw=2.)
ax2.axhline(N - i, c='g', lw=2.)
ax3.axvline(i, c='g', lw=2.)
last_assignment = assignment
ax4.set_xticklabels([])
ax4.set_yticklabels([])
if filename is not None:
plt.savefig(filename, format='pdf', bbox_inches='tight')
else:
plt.show()