python类cm()的实例源码

plot_container.py 文件源码 项目:yt 作者: yt-project 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def set_xlabel(self, label):
        r"""
        Allow the user to modify the X-axis title
        Defaults to the global value. Fontsize defaults
        to 18.

        Parameters
        ----------
        x_title: str
              The new string for the x-axis.

        >>>  plot.set_xlabel("H2I Number Density (cm$^{-3}$)")

        """
        self._xlabel = label
        return self
plot_container.py 文件源码 项目:yt 作者: yt-project 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def set_colorbar_label(self, field, label):
        r"""
        Sets the colorbar label.

        Parameters
        ----------
        field: str or tuple
          The name of the field to modify the label for.
        label: str
          The new label

        >>>  plot.set_colorbar_label("density", "Dark Matter Density (g cm$^{-3}$)")

        """
        self._colorbar_label[field] = label
        return self
visualisation.py 文件源码 项目:adversarial-variational-bayes 作者: gdikov 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _cmap_discretize(cmap, N):
    """Return a discrete colormap from the continuous colormap cmap.

        cmap: colormap instance, eg. cm.jet.
        N: number of colors.

    Example
        x = resize(arange(100), (5,100))
        djet = cmap_discretize(cm.jet, 5)
        imshow(x, cmap=djet)
    """

    if type(cmap) == str:
        cmap = plt.get_cmap(cmap)
    colors_i = np.concatenate((np.linspace(0, 1., N), (0.,0.,0.,0.)))
    colors_rgba = cmap(colors_i)
    indices = np.linspace(0, 1., N+1)
    cdict = {}
    for ki, key in enumerate(('red','green','blue')):
        cdict[key] = [(indices[i], colors_rgba[i-1,ki], colors_rgba[i,ki])
                      for i in range(N+1)]
    # Return colormap object.
    return mcolors.LinearSegmentedColormap(cmap.name + "_%d"%N, cdict, 1024)
plotting.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _make_plot(self):
        x, y, data, C = self.x, self.y, self.data, self.C
        ax = self.axes[0]
        # pandas uses colormap, matplotlib uses cmap.
        cmap = self.colormap or 'BuGn'
        cmap = self.plt.cm.get_cmap(cmap)
        cb = self.kwds.pop('colorbar', True)

        if C is None:
            c_values = None
        else:
            c_values = data[C].values

        ax.hexbin(data[x].values, data[y].values, C=c_values, cmap=cmap,
                  **self.kwds)
        if cb:
            img = ax.collections[0]
            self.fig.colorbar(img, ax=ax)
Logger.py 文件源码 项目:DCN 作者: alexnowakvila 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def plot_accuracies(self, accuracies, scales=[], mode='train', fig=0):
        plt.figure(fig)
        plt.clf()
        colors = cm.rainbow(np.linspace(0, 1, len(scales)))
        l = []
        names = [str(sc) for sc in scales]
        for i, acc in enumerate(accuracies):
            ll, = plt.plot(range(len(acc)), acc, color=colors[i])
            l.append(ll)
        plt.ylabel('accuracy')
        plt.legend(l, names, loc=2, prop={'size': 6})
        if mode == 'train':
            plt.xlabel('iterations')
        else:
            plt.xlabel('iterations x 1000')
        path = os.path.join(self.path, 'accuracies_{}.png'.format(mode))
        plt.savefig(path)
Logger.py 文件源码 项目:DCN 作者: alexnowakvila 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def plot_accuracies(self, accuracies, scales=[], mode='train', fig=0):
        plt.figure(fig)
        plt.clf()
        colors = cm.rainbow(np.linspace(0, 1, len(scales)))
        l = []
        names = [str(sc) for sc in scales]
        for i, acc in enumerate(accuracies):
            ll, = plt.plot(range(len(acc)), acc, color=colors[i])
            l.append(ll)
        plt.ylabel('accuracy')
        plt.legend(l, names, loc=2, prop={'size': 6})
        if mode == 'train':
            plt.xlabel('iterations')
        else:
            plt.xlabel('iterations x 1000')
        path = os.path.join(self.path, 'accuracies_{}.png'.format(mode))
        plt.savefig(path)
Logger.py 文件源码 项目:DCN 作者: alexnowakvila 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def plot_norm_points(self, Inputs_N, e, Perms, scales, fig=1):
        input = Inputs_N[0][0].data.cpu().numpy()
        e = torch.sort(e, 1)[0][0].data.cpu().numpy()
        Perms = [perm[0].data.cpu().numpy() for perm in Perms]
        plt.figure(fig)
        plt.clf()
        ee = e.copy()
        for i, perm in enumerate(Perms):
            plt.subplot(1, len(Perms), i + 1)
            colors = cm.rainbow(np.linspace(0, 1, 2 ** (scales - i)))
            perm = perm[np.where(perm > 0)[0]] - 1
            points = input[perm]
            e_scale = ee[perm]
            for node in xrange(2 ** (scales - i)):
                ind = np.where(e_scale == node)[0]
                pts = points[ind]
                plt.scatter(pts[:, 0], pts[:, 1], c=colors[node])
            ee //= 2
        path = os.path.join(self.path, 'visualize_example.png')
        plt.savefig(path)
plotting.py 文件源码 项目:ml_capstone 作者: drscott173 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def contour_plot(self, sensors=[0.2,0.2,0.2,0.0], title="Contour Plot of Q(s,a)"):
        #
        # Show a contour plot of how Q varies over the geometry of our
        # play area, while fixing sensor readings and car rotation.
        #
        x,y,z = self.location_contours(sensors)
        plt.figure(facecolor='white')
        plt.hot()
        im = plt.imshow(z, interpolation='bilinear', origin='lower', cmap=cm.inferno)
        CBI = plt.colorbar(im, orientation='horizontal', shrink=0.8)
        plt.title(title+": theta="+str(int(sensors[3]*180.0/np.pi)))
        plt.xlabel('x%')
        plt.ylabel('y%')
        plt.show()
plotting.py 文件源码 项目:ml_capstone 作者: drscott173 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def angle_v_sensor_plot(self, x0=0.5, y0=0.5, title="Contour Plot of Q(s,a)"):
        #
        # Show a contour plot of how Q varies as we change car rotation
        # and sensor strength at a fixed position (x0,y0) in the game area.
        #
        x,y,z = self.angle_v_sensor_contours(x0, y0)
        plt.figure(facecolor='white')
        plt.hot()
        plt.xlabel('Orientation')
        plt.ylabel('Signal strength')
        im = plt.imshow(z, interpolation='bilinear', origin='lower', cmap=cm.inferno)
        CBI = plt.colorbar(im, orientation='horizontal', shrink=0.8)
        plt.title(title)
        plt.show()
plotting.py 文件源码 项目:ml_capstone 作者: drscott173 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def theta_anim(self):
        #
        # Animate the contour plot from above by varying theta from 0 to 2*pi
        #
        self.theta = 0
        x,y,z = self.location_contours([0.2, 0.2, 0.2, self.theta])
        self.fig = plt.figure()
        self.im = plt.imshow(z, interpolation='bilinear', origin='lower', cmap=cm.inferno)
        CBI = plt.colorbar(self.im, orientation='horizontal', shrink=0.8)
        plt.title('Contour Plot - Q')
        ani = animation.FuncAnimation(self.fig, self.update_theta, interval=50, blit=False)
        plt.show()
plotting.py 文件源码 项目:ml_capstone 作者: drscott173 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def theta_gif(self):
        #
        # Create an animated gif of the contour plot from above by varying theta from 0 to pi
        #
        self.theta = 0
        x,y,z = self.location_contours([0.2, 0.2, 0.2, self.theta])
        self.fig = plt.figure()
        self.im = plt.imshow(z, interpolation='bilinear', origin='lower', cmap=cm.inferno)
        CBI = plt.colorbar(self.im, orientation='horizontal', shrink=0.8)
        plt.xlabel('X %')
        plt.ylabel('Y %')
        ani = animation.FuncAnimation(self.fig, self.update_theta, frames=np.arange(0,20), interval=200, blit=False)
        ani.save('figures/theta.gif', dpi=80, writer='imagemagick')
plotting.py 文件源码 项目:ml_capstone 作者: drscott173 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def sensor_anim(self, theta=0):
        # 
        # Animate the contour plot by changing sensor values and holding
        # the angle fixed at theta.
        #
        self.theta = theta
        self.sensor = 0.0
        x,y,z = self.location_contours([0,0,0, self.theta])
        self.fig = plt.figure()
        self.im = plt.imshow(z, interpolation='bilinear', origin='lower', cmap=cm.inferno)
        CBI = plt.colorbar(self.im, orientation='horizontal', shrink=0.8)
        ani = animation.FuncAnimation(self.fig, self.update_sensor, interval=50, blit=False)
        plt.show()
TreeMesh.py 文件源码 项目:discretize 作者: simpeg 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def plotImage(self, I, ax=None, showIt=False, grid=False, clim=None):
        if self.dim == 3: raise Exception('Use plot slice?')


        import matplotlib.pyplot as plt
        import matplotlib
        from mpl_toolkits.mplot3d import Axes3D
        import matplotlib.colors as colors
        import matplotlib.cm as cmx

        if ax is None: ax = plt.subplot(111)
        jet = cm = plt.get_cmap('jet')
        cNorm  = colors.Normalize(
            vmin=I.min() if clim is None else clim[0],
            vmax=I.max() if clim is None else clim[1])

        scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=jet)
        ax.set_xlim((self.x0[0], self.h[0].sum()))
        ax.set_ylim((self.x0[1], self.h[1].sum()))
        for ii, node in enumerate(self._sortedCells):
            x0, sz = self._cellN(node), self._cellH(node)
            ax.add_patch(plt.Rectangle((x0[0], x0[1]), sz[0], sz[1], facecolor=scalarMap.to_rgba(I[ii]), edgecolor='k' if grid else 'none'))
            # if text: ax.text(self.center[0],self.center[1],self.num)
        scalarMap._A = []  # http://stackoverflow.com/questions/8342549/matplotlib-add-colorbar-to-a-sequence-of-line-plots
        ax.set_xlabel('x')
        ax.set_ylabel('y')
        if showIt: plt.show()
        return [scalarMap]
View.py 文件源码 项目:discretize 作者: simpeg 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def plotImage(
        self, I, ax=None, showIt=False, grid=False, clim=None
    ):
        if self.dim == 3:
            raise NotImplementedError('This is not yet done!')

        import matplotlib.pyplot as plt
        import matplotlib
        from mpl_toolkits.mplot3d import Axes3D
        import matplotlib.colors as colors
        import matplotlib.cm as cmx

        if ax is None:
            ax = plt.subplot(111)

        jet = cm = plt.get_cmap('jet')
        cNorm  = colors.Normalize(
            vmin=I.min() if clim is None else clim[0],
            vmax=I.max() if clim is None else clim[1])

        scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=jet)
        # ax.set_xlim((self.x0[0], self.h[0].sum()))
        # ax.set_ylim((self.x0[1], self.h[1].sum()))

        Nx = self.r(self.gridN[:, 0], 'N', 'N', 'M')
        Ny = self.r(self.gridN[:, 1], 'N', 'N', 'M')
        cell = self.r(I, 'CC', 'CC', 'M')

        for ii in range(self.nCx):
            for jj in range(self.nCy):
                I = [ii, ii+1, ii+1, ii]
                J = [jj, jj, jj+1, jj+1]
                ax.add_patch(plt.Polygon(np.c_[Nx[I, J], Ny[I, J]], facecolor=scalarMap.to_rgba(cell[ii, jj]), edgecolor='k' if grid else 'none'))

        scalarMap._A = []  # http://stackoverflow.com/questions/8342549/matplotlib-add-colorbar-to-a-sequence-of-line-plots
        ax.set_xlabel('x')
        ax.set_ylabel('y')
        if showIt:
            plt.show()
        return [scalarMap]
colormaps.py 文件源码 项目:notebook-molecular-visualization 作者: Autodesk 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _cmap_to_rgb(mplmap, values):
    from matplotlib import cm

    cmap = getattr(cm, mplmap)
    mx = values.max()
    mn = values.min()
    cat_values = (values-mn)/(mx-mn)  # rescale values [0.0,1.0]
    rgba = cmap(cat_values)  # array of RGBA values in range [0.0, 1.0]

    # strip alpha field and rescale to [0,255] RGB integers
    rgb = [list(map(int, c[:3]*256.0)) for c in rgba]
    return rgb
benchmark_functions.py 文件源码 项目:StochOPy 作者: keurfonluu 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _set_cmap(self):
        import matplotlib.cm as cm
        if hasattr(cm, "viridis"):
            return "viridis"
        else:
            return "jet"
matplotlib.py 文件源码 项目:physt 作者: janpipek 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _add_colorbar(ax, cmap, cmap_data, norm):
    """Show a colorbar right of the plot.

    Parameters
    ----------
    ax : plt.Axes
    cmap : colors.Colormap
    cmap_data : array_like
    norm : colors.Normalize
    """
    fig = ax.get_figure()
    mappable = cm.ScalarMappable(cmap=cmap, norm=norm)
    mappable.set_array(cmap_data)   # TODO: Or what???
    fig.colorbar(mappable, ax=ax)
plot_container.py 文件源码 项目:yt 作者: yt-project 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def set_background_color(self, field, color=None):
        """set the background color to match provided color

        Parameters
        ----------
        field : string
            the field to set the colormap
            if field == 'all', applies to all plots.
        color : string or RGBA tuple (optional)
            if set, set the background color to this color
            if unset, background color is set to the bottom value of
            the color map

        """
        actual_field = self.data_source._determine_fields(field)[0]
        if color is None:
            cmap = self._colormaps[actual_field]
            if isinstance(cmap, string_types):
                try:
                    cmap = yt_colormaps[cmap]
                except KeyError:
                    cmap = getattr(matplotlib.cm, cmap)
            color = cmap(0)
        if LooseVersion(matplotlib.__version__) < LooseVersion("2.0.0"):
            self.plots[actual_field].axes.set_axis_bgcolor(color)
        else:
            self.plots[actual_field].axes.set_facecolor(color)
        return self
visualisation.py 文件源码 项目:adversarial-variational-bayes 作者: gdikov 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _colorbar_index(ncolors, cmap):
    cmap = _cmap_discretize(cmap, ncolors)
    mappable = cm.ScalarMappable(cmap=cmap)
    mappable.set_array([])
    mappable.set_clim(-0.5, ncolors+0.5)
    colorbar = plt.colorbar(mappable)
    colorbar.set_ticks(np.linspace(0, ncolors, ncolors))
    colorbar.set_ticklabels(range(ncolors))
settings.py 文件源码 项目:evaluation-toolkit 作者: lightfield-analysis 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def abs_diff_map_args(vmin=0, vmax=0.1):
    return {"vmin": vmin,
            "vmax": vmax,
            "interpolation": "none",
            "cmap": cm.YlOrRd}
zero_corr.py 文件源码 项目:cgpm 作者: probcomp 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def plot_samples(samples, dist, noise, modelno, num_samples, timestamp):
    """Plot the observed samples and posterior samples side-by-side."""
    print 'Plotting samples %s %f' % (dist, noise)
    fig, ax = plt.subplots(nrows=1, ncols=2)
    fig.suptitle(
        '%s (noise %1.2f, sample %d)' % (dist, noise, modelno),
        size=16)
    # Plot the observed samples.
    T = simulate_dataset(dist, noise, num_samples)
    # ax[0].set_title('Observed Data')
    ax[0].text(
        .5, .95, 'Observed Data',
        horizontalalignment='center',
        transform=ax[0].transAxes)
    ax[0].set_xlabel('x1')
    ax[0].set_ylabel('x2')
    ax[0].scatter(T[:,0], T[:,1], color='k', alpha=.5)
    ax[0].set_xlim(simulator_limits[dist][0])
    ax[0].set_ylim(simulator_limits[dist][1])
    ax[0].grid()
    # Plot posterior distribution.
    # ax[1].set_title('CrossCat Posterior Samples')
    ax[1].text(
        .5, .95, 'CrossCat Posterior Samples',
        horizontalalignment='center',
        transform=ax[1].transAxes)
    ax[1].set_xlabel('x1')
    clusters = set(samples[:,2])
    colors = iter(matplotlib.cm.gist_rainbow(
        np.linspace(0, 1, len(clusters)+2)))
    for c in clusters:
        sc = samples[samples[:,2] == c][:,[0,1]]
        ax[1].scatter(sc[:,0], sc[:,1], alpha=.5, color=next(colors))
    ax[1].set_xlim(ax[0].get_xlim())
    ax[1].set_ylim(ax[0].get_ylim())
    ax[1].grid()
    # Save.
    # fig.set_tight_layout(True)
    fig.savefig(filename_samples_figure(dist, noise, modelno, timestamp))
    plt.close('all')
test_basics.py 文件源码 项目:Taskpacker 作者: Edinburgh-Genome-Foundry 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_dna_assembly_example(tmpdir):

    spreadsheet_path = os.path.join('examples', 'examples_data',
                                    "dna_assembly.xls")

    colors = (cm.Paired(0.21 * i % 1.0) for i in range(30))

    resources = resources_from_spreadsheet(
        spreadsheet_path=spreadsheet_path, sheetname="resources")

    processes = [
        tasks_from_spreadsheet(spreadsheet_path=spreadsheet_path,
                               sheetname="process",
                               resources_dict=resources,
                               tasks_color=next(colors),
                               task_name_prefix="WU%d_" % (i + 1))
        for i in range(5)
    ]

    print("NOW OPTIMIZING THE SCHEDULE, BE PATIENT...")
    new_processes = schedule_processes_series(
        processes, est_process_duration=5000, time_limit=6)

    # PLOT THE TASKS DEPENDENCY TREE
    ax = plot_tasks_dependency_graph(processes[0])
    ax.set_title("PLAN OF A WORK UNIT")
    ax.figure.savefig("basic_example_work_unit.pdf", bbox_inches="tight")

    # PLOT THE OPTIMIZED SCHEDULE
    ax = plot_schedule([t for process in new_processes for t in process])
    ax.figure.set_size_inches((8, 5))
    ax.set_xlabel("time (min)")
    ax.figure.savefig(os.path.join(str(tmpdir),
                                   "basic_example_schedule.png"),
                      bbox_inches="tight")
colormaps_utils.py 文件源码 项目:NeuroSurf 作者: pelednoam 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def get_scalar_map(x_min, x_max, color_map='jet'):
    cm = plt.get_cmap(color_map)
    cNorm = matplotlib.colors.Normalize(vmin=x_min, vmax=x_max)
    return cmx.ScalarMappable(norm=cNorm, cmap=cm)
p00ps.py 文件源码 项目:bates_galaxies_lab 作者: aleksds 项目源码 文件源码 阅读 61 收藏 0 点赞 0 评论 0
def __init__(self, name, z, x, y):
        self.name = name
        self.z = z
        self.x = x
        self.y = y
        self.lDcm = cosmo.luminosity_distance(self.z)*u.Mpc.to(u.cm) / u.Mpc
        self.radToKpc = conv.arcsec_per_kpc_proper(self.z)*0.05/u.arcsec*u.kpc
# We grab our galaxy data and make a list of galaxy objects
pyplot_plus.py 文件源码 项目:artemis 作者: QUVA-Lab 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def set_lines_color_cycle_map(name, length):
    cmap = getattr(plt.cm, name)
    c = cycler('color', cmap(np.linspace(0, 1, length)))
    matplotlib.rcParams['axes.prop_cycle'] = c
tsne_display.py 文件源码 项目:ecogdeep 作者: nancywang1991 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def imscatter(x, y, image, ax=None, color=None, days=None):
    """Scatter image at x, y on scatter graph

    Args:
        x (int): x location of data point
        y (int): y location of data point
        image: PIL image to be displayed
        ax: scatterplot handle
        color (r,g,b,a): if not None, border color
        days (list of int): if not None, select color based on time of datapoint and days contains
                            the days present in dataset
    Returns:
        artists (list of axis artists)
    """
    if ax is None:
        ax = plt.gca()
    try:
        image = plt.imread(image)
    except TypeError:
        # Likely already an array...
        pass

    x, y = np.atleast_1d(x, y)
    artists = []
    cmap = matplotlib.cm.get_cmap('nipy_spectral')
    for x0, y0, im0 in zip(x, y, image):
        if days:
        # Assumes around 700 videos per day
            color = cmap((days.index(int(im0.split("/")[-1].split("_")[1]))*700+int(im0.split("/")[-1].split("_")[2]))/((len(days))*700.0))
    if os.path.exists(im0):
            im = load_img_seq(im0, resize_size=(1,1), color=color)
            im = OffsetImage(im, zoom=2)
            ab = AnnotationBbox(im, (x0, y0), xycoords='data', frameon=frameon)
            artists.append(ax.add_artist(ab))
    ax.update_datalim(np.column_stack([x, y]))
    ax.autoscale()
    return artists
Plotter.py 文件源码 项目:nmp_qc 作者: priba 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def plot_graph(self, am, position=None, cls=None, fig_name='graph.png'):

        with warnings.catch_warnings():
            warnings.filterwarnings("ignore")

            g = nx.from_numpy_matrix(am)

            if position is None:
                position=nx.drawing.circular_layout(g)

            fig = plt.figure()

            if cls is None:
                cls='r'
            else:
                # Make a user-defined colormap.
                cm1 = mcol.LinearSegmentedColormap.from_list("MyCmapName", ["r", "b"])

                # Make a normalizer that will map the time values from
                # [start_time,end_time+1] -> [0,1].
                cnorm = mcol.Normalize(vmin=0, vmax=1)

                # Turn these into an object that can be used to map time values to colors and
                # can be passed to plt.colorbar().
                cpick = cm.ScalarMappable(norm=cnorm, cmap=cm1)
                cpick.set_array([])
                cls = cpick.to_rgba(cls)
                plt.colorbar(cpick, ax=fig.add_subplot(111))


            nx.draw(g, pos=position, node_color=cls, ax=fig.add_subplot(111))

            fig.savefig(os.path.join(self.plotdir, fig_name))
viz.py 文件源码 项目:pactools 作者: pactools 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def set_style(font_scale=None):
    # use default Latex font for math even with matplotlib 2.0
    mpl.rcParams['mathtext.fontset'] = 'cm'
    if font_scale is not None:
        mpl.rcParams['font.size'] = 10 * font_scale
Logger.py 文件源码 项目:DCN 作者: alexnowakvila 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def plot_classes(self, points, clusters, e, fig=0):
        e = e[0].data.cpu().numpy()
        points = points[0]
        plt.figure(fig)
        plt.clf()
        colors = cm.rainbow(np.linspace(0, 1, clusters))
        for cl in range(clusters):
            ind = np.where(e == cl)[0]
            pts = points[ind]
            plt.scatter(pts[:, 0], pts[:, 1], c=colors[cl])
        plt.title('clustering')
        path = os.path.join(self.path, 'clustering_ex.png'.format(clusters))
        plt.savefig(path)
data_generator.py 文件源码 项目:DCN 作者: alexnowakvila 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def plot_example(self, x, y, clusters, length):
        plt.figure(0)
        plt.clf()
        colors = cm.rainbow(np.linspace(0, 1, clusters))
        for c in range(clusters):
            ind = np.where(y == c)[0]
            plt.scatter(x[ind, 0], x[ind, 1], c=colors[c])
        path = '/home/anowak/DynamicProgramming/DP/plots/example.png'
        plt.savefig(path)


问题


面经


文章

微信
公众号

扫码关注公众号