python类colors()的实例源码

plot_figures.py 文件源码 项目:IDNNs 作者: ravidziv 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def plot_by_training_samples(I_XT_array, I_TY_array, axes, epochsInds, f, index_i, index_j, size_ind, font_size, y_ticks, x_ticks, colorbar_axis, title_str, axis_font, bar_font, save_name, samples_labels):
    """Print the final epoch of all the diffrenet training samples size """
    max_index = size_ind if size_ind!=-1 else I_XT_array.shape[2]-1
    cmap = plt.get_cmap('gnuplot')
    colors = [cmap(i) for i in np.linspace(0, 1, max_index+1)]
    #Print the final epoch
    nums_epoch= -1
    #Go over all the samples size and plot them with the right color
    for index_in_range in range(0, max_index):
        XT, TY = [], []
        for layer_index in range(0, I_XT_array.shape[4]):
                XT.append(np.mean(I_XT_array[:, -1, index_in_range, nums_epoch, layer_index], axis=0))
                TY.append(np.mean(I_TY_array[:, -1, index_in_range,nums_epoch, layer_index], axis=0))
        axes[index_i, index_j].plot(XT, TY, marker='o', linestyle='-', markersize=12, markeredgewidth=0.2, linewidth=0.5,
                         color=colors[index_in_range])
    utils.adjustAxes(axes[index_i, index_j], axis_font=axis_font, title_str=title_str, x_ticks=x_ticks, y_ticks=y_ticks,
                     x_lim=None, y_lim=None,
                     set_xlabel=index_i == axes.shape[0] - 1, set_ylabel=index_j == 0, x_label='$I(X;T)$',
                     y_label='$I(T;Y)$', set_xlim=True,
                     set_ylim=True, set_ticks=True, label_size=font_size)
    #Create color bar and save it
    if index_i == axes.shape[0] - 1 and index_j == axes.shape[1] - 1:
        utils.create_color_bar(f, cmap, colorbar_axis, bar_font, epochsInds, title='Training Data')
        f.savefig(save_name + '.jpg', dpi=150, format='jpg')
plot_figures.py 文件源码 项目:IDNNs 作者: ravidziv 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def update_line_each_neuron(num, print_loss, Ix, axes, Iy, train_data, accuracy_test, epochs_bins, loss_train_data, loss_test_data, colors, epochsInds,
                            font_size = 18, axis_font = 16, x_lim = [0,12.2], y_lim=[0, 1.08],x_ticks = [], y_ticks = []):
    """Update the figure of the infomration plane for the movie"""
    #Print the line between the points
    axes[0].clear()
    if len(axes)>1:
        axes[1].clear()
    #Print the points
    for layer_num in range(Ix.shape[2]):
        for net_ind in range(Ix.shape[0]):
            axes[0].scatter(Ix[net_ind,num, layer_num], Iy[net_ind,num, layer_num], color = colors[layer_num], s = 35,edgecolors = 'black',alpha = 0.85)
    title_str = 'Information Plane - Epoch number - ' + str(epochsInds[num])
    utils.adjustAxes(axes[0], axis_font, title_str, x_ticks, y_ticks, x_lim, y_lim, set_xlabel=True, set_ylabel=True,
                     x_label='$I(X;T)$', y_label='$I(T;Y)$')
    #Print the loss function and the error
    if len(axes)>1:
        axes[1].plot(epochsInds[:num], 1 - np.mean(accuracy_test[:, :num], axis=0), color='g')
        if print_loss:
            axes[1].plot(epochsInds[:num], np.mean(loss_test_data[:, :num], axis=0), color='y')
        nereast_val = np.searchsorted(epochs_bins, epochsInds[num], side='right')
        axes[1].set_xlim([0,epochs_bins[nereast_val]])
        axes[1].legend(('Accuracy', 'Loss Function'), loc='best')
plot_figures.py 文件源码 项目:IDNNs 作者: ravidziv 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def plot_hist(str_name, save_name='dist'):
    data_array = utils.get_data(str_name)
    params = np.squeeze(np.array(data_array['information']))
    ind_array = data_array['params']['epochsInds']
    DKL_YgX_YgT = utils.extract_array(params, 'DKL_YgX_YgT')
    p_ts = utils.extract_array(params, 'pts')
    H_Xgt = utils.extract_array(params, 'H_Xgt')

    f, (axes) = plt.subplots(3, 1)
    #axes = [axes]
    f.subplots_adjust(left=0.14, bottom=0.1, right=.928, top=0.94, wspace=0.13, hspace=0.55)
    colors = LAYERS_COLORS
    line_ani = animation.FuncAnimation(f, update_bars_num_of_ts, len(p_ts), repeat=False,
                                       interval=1, blit=False, fargs=[p_ts,H_Xgt,DKL_YgX_YgT, axes,ind_array])
    Writer = animation.writers['ffmpeg']
    writer = Writer(fps=50)
    #Save the movie
    line_ani.save(save_name+'_movie.mp4',writer=writer,dpi=250)
    plt.show()
analyse_orderless_NADE.py 文件源码 项目:NADE 作者: MarcCote 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def plot_RF(rf, sample_shape):
    norm = matplotlib.colors.Normalize()
    norm.autoscale(rf)
    rf = np.resize(rf, np.prod(sample_shape)).reshape(sample_shape)
    norm_zero = min(max(norm(0.0), 0.0+1e-6), 1.0-1e-6)
    cdict = {
             'red'  :  ((0., 0., 0.), (norm_zero, 0.5, 0.5), (1., 1., 1.)),
             'green':  ((0., 0., 0.), (norm_zero, 0.5, 0.5), (1., 1., 1.)),
             'blue' :  ((0., 0., 0.), (norm_zero, 0.5, 0.5), (1., 1., 1.))
             }
    #generate the colormap with 1024 interpolated values
    my_cmap = matplotlib.colors.LinearSegmentedColormap('my_colormap', cdict, 1024)                
    plt.imshow(rf, interpolation='nearest', origin='upper', cmap=my_cmap)   
    ax = plt.gca()
    ax.xaxis.set_visible(False)
    ax.yaxis.set_visible(False)
tech.py 文件源码 项目:quantdigger 作者: andyzsf 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_stock_signal_data():
    fname =  os.path.join(os.getcwd(), 'data', 'stock_data', '_IF000.csv')
    price_data = csv2frame(fname)
    from matplotlib.colors import colorConverter
    info = load_tradeinfo("_djtrend2_IF000")
    entry_x = []
    entry_y = info['entry_price'].tolist()
    exit_x = []
    exit_y = info['exit_price'].tolist()
    colors = []
    for t in info.index:
        entry_x.append(price_data.index.searchsorted(t))
    for t in info['exit_datetime'].values:
        exit_x.append(price_data.index.searchsorted(t))
    for i in range(len(info)):
        tr = info.ix[i]
        if tr['islong']:
            c = 'r' if tr['exit_price']>tr['entry_price'] else 'w'
        else:
            c = 'r' if tr['exit_price']<tr['entry_price'] else 'w'
        r,g,b = colorConverter.to_rgb(c)
        colors.append((r,g,b,1))
    return price_data, entry_x, entry_y, exit_x, exit_y, colors
visualisation.py 文件源码 项目:adversarial-variational-bayes 作者: gdikov 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _cmap_discretize(cmap, N):
    """Return a discrete colormap from the continuous colormap cmap.

        cmap: colormap instance, eg. cm.jet.
        N: number of colors.

    Example
        x = resize(arange(100), (5,100))
        djet = cmap_discretize(cm.jet, 5)
        imshow(x, cmap=djet)
    """

    if type(cmap) == str:
        cmap = plt.get_cmap(cmap)
    colors_i = np.concatenate((np.linspace(0, 1., N), (0.,0.,0.,0.)))
    colors_rgba = cmap(colors_i)
    indices = np.linspace(0, 1., N+1)
    cdict = {}
    for ki, key in enumerate(('red','green','blue')):
        cdict[key] = [(indices[i], colors_rgba[i-1,ki], colors_rgba[i,ki])
                      for i in range(N+1)]
    # Return colormap object.
    return mcolors.LinearSegmentedColormap(cmap.name + "_%d"%N, cdict, 1024)
plotting.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def _apply_style_colors(self, colors, kwds, col_num, label):
        """
        Manage style and color based on column number and its label.
        Returns tuple of appropriate style and kwds which "color" may be added.
        """
        style = None
        if self.style is not None:
            if isinstance(self.style, list):
                try:
                    style = self.style[col_num]
                except IndexError:
                    pass
            elif isinstance(self.style, dict):
                style = self.style.get(label, style)
            else:
                style = self.style

        has_color = 'color' in kwds or self.colormap is not None
        nocolor_style = style is None or re.match('[a-z]+', style) is None
        if (has_color or self.subplots) and nocolor_style:
            kwds['color'] = colors[col_num % len(colors)]
        return style, kwds
plotting.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def _make_plot(self):
        colors = self._get_colors()
        stacking_id = self._get_stacking_id()

        for i, (label, y) in enumerate(self._iter_data()):
            ax = self._get_ax(i)

            kwds = self.kwds.copy()

            label = com.pprint_thing(label)
            kwds['label'] = label

            style, kwds = self._apply_style_colors(colors, kwds, i, label)
            if style is not None:
                kwds['style'] = style

            kwds = self._make_plot_keywords(kwds, y)
            artists = self._plot(ax, y, column_num=i,
                                 stacking_id=stacking_id, **kwds)
            self._add_legend_handle(artists[0], label, index=i)
plotting.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def maybe_color_bp(self, bp):
        if isinstance(self.color, dict):
            boxes = self.color.get('boxes', self._boxes_c)
            whiskers = self.color.get('whiskers', self._whiskers_c)
            medians = self.color.get('medians', self._medians_c)
            caps = self.color.get('caps', self._caps_c)
        else:
            # Other types are forwarded to matplotlib
            # If None, use default colors
            boxes = self.color or self._boxes_c
            whiskers = self.color or self._whiskers_c
            medians = self.color or self._medians_c
            caps = self.color or self._caps_c

        from matplotlib.artist import setp
        setp(bp['boxes'], color=boxes, alpha=1)
        setp(bp['whiskers'], color=whiskers, alpha=1)
        setp(bp['medians'], color=medians, alpha=1)
        setp(bp['caps'], color=caps, alpha=1)
node_profile_analyzer_time_and_veh_legs.py 文件源码 项目:gtfspy 作者: CxAalto 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _get_fill_and_line_colors(self, min_n, max_n):
        colors = self._get_colors_for_boardings(min_n, max_n)
        n_boardings_range = range(min_n, max_n + 1)
        nboardings_to_color = {n: colors[i] for i, n in enumerate(n_boardings_range)}

        n_boardings_to_line_color = {}
        n_boardings_to_fill_color = {}

        #
        rgbs = [color_tuple[:3] for color_tuple in nboardings_to_color.values()]
        hsvs = matplotlib.colors.rgb_to_hsv(rgbs)
        max_saturation = max([hsv[1] for hsv in hsvs])
        line_saturation_multiplier = 1 / max_saturation

        for n, color_tuple in nboardings_to_color.items():
            c = NodeProfileAnalyzerTimeAndVehLegs._multiply_color_saturation(color_tuple, line_saturation_multiplier)
            c = NodeProfileAnalyzerTimeAndVehLegs._multiply_color_brightness(c, 1)
            n_boardings_to_line_color[n] = c

            c = NodeProfileAnalyzerTimeAndVehLegs._multiply_color_brightness(color_tuple, 1.2)
            c = NodeProfileAnalyzerTimeAndVehLegs._multiply_color_saturation(c, 0.8)
            n_boardings_to_fill_color[n] = c
        return n_boardings_to_fill_color, n_boardings_to_line_color
plothelpers.py 文件源码 项目:mplbplot 作者: pieterdavid 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def __init__(self, vmax=None, clip=False):
        """
        If *vmax* is not given, it is initialized from the maximum absolute
        value of the first input processed.  That is, *__call__(A)* calls
        *autoscale_None(A)*.
        If *clip* is *True* and the given value falls outside the range,
        the returned value will be 0 or 1, whichever is closer.

        Works with scalars or arrays, including masked arrays.  If
        *clip* is *True*, masked values are set to 1; otherwise they
        remain masked.  Clipping silently defeats the purpose of setting
        the over, under, and masked colors in the colormap, so it is
        likely to lead to surprises; therefore the default is
        *clip* = *False*.
        """
        self.vmax = vmax
        self.clip = clip
showintf.py 文件源码 项目:pygmtsar 作者: bakerunavco 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def dismph_colormap():
    '''Make a custom colormap like the one used in dismph.  The list was
      created from dismphN.mat in geodmod which is a 64 segmented colormap
      using the following:
        from scipy.io import loadmat
        cmap = loadmat('dismphN.mat',struct_as_record=True)['dismphN']
        from matplotlib.colors import rgb2hex
        list=[]
        for i in cmap: list.append(rgb2hex(i))
    '''
    list = ['#f579cd', '#f67fc6', '#f686bf', '#f68cb9', '#f692b3', '#f698ad',
            '#f69ea7', '#f6a5a1', '#f6ab9a', '#f6b194', '#f6b78e', '#f6bd88',
            '#f6c482', '#f6ca7b', '#f6d075', '#f6d66f', '#f6dc69', '#f6e363',
            '#efe765', '#e5eb6b', '#dbf071', '#d0f477', '#c8f67d', '#c2f684',
            '#bbf68a', '#b5f690', '#aff696', '#a9f69c', '#a3f6a3', '#9cf6a9',
            '#96f6af', '#90f6b5', '#8af6bb', '#84f6c2', '#7df6c8', '#77f6ce',
            '#71f6d4', '#6bf6da', '#65f6e0', '#5ef6e7', '#58f0ed', '#52e8f3',
            '#4cdbf9', '#7bccf6', '#82c4f6', '#88bdf6', '#8eb7f6', '#94b1f6',
            '#9aabf6', '#a1a5f6', '#a79ef6', '#ad98f6', '#b392f6', '#b98cf6',
            '#bf86f6', '#c67ff6', '#cc79f6', '#d273f6', '#d86df6', '#de67f6',
            '#e561f6', '#e967ec', '#ed6de2', '#f173d7']
    dismphCM = matplotlib.colors.LinearSegmentedColormap.from_list('mycm', list)
    dismphCM.set_bad('w', 0.0)
    return dismphCM
tsne.py 文件源码 项目:confusion 作者: abhimanyudubey 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def get_cmap(N):
    color_norm  = colors.Normalize(vmin=0, vmax=N-1)
    scalar_map = cmx.ScalarMappable(norm=color_norm, cmap='hsv')
    def map_index_to_rgb_color(index):
        return scalar_map.to_rgba(index)
    return map_index_to_rgb_color
TreeMesh.py 文件源码 项目:discretize 作者: simpeg 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def plotImage(self, I, ax=None, showIt=False, grid=False, clim=None):
        if self.dim == 3: raise Exception('Use plot slice?')


        import matplotlib.pyplot as plt
        import matplotlib
        from mpl_toolkits.mplot3d import Axes3D
        import matplotlib.colors as colors
        import matplotlib.cm as cmx

        if ax is None: ax = plt.subplot(111)
        jet = cm = plt.get_cmap('jet')
        cNorm  = colors.Normalize(
            vmin=I.min() if clim is None else clim[0],
            vmax=I.max() if clim is None else clim[1])

        scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=jet)
        ax.set_xlim((self.x0[0], self.h[0].sum()))
        ax.set_ylim((self.x0[1], self.h[1].sum()))
        for ii, node in enumerate(self._sortedCells):
            x0, sz = self._cellN(node), self._cellH(node)
            ax.add_patch(plt.Rectangle((x0[0], x0[1]), sz[0], sz[1], facecolor=scalarMap.to_rgba(I[ii]), edgecolor='k' if grid else 'none'))
            # if text: ax.text(self.center[0],self.center[1],self.num)
        scalarMap._A = []  # http://stackoverflow.com/questions/8342549/matplotlib-add-colorbar-to-a-sequence-of-line-plots
        ax.set_xlabel('x')
        ax.set_ylabel('y')
        if showIt: plt.show()
        return [scalarMap]
View.py 文件源码 项目:discretize 作者: simpeg 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def plotImage(
        self, I, ax=None, showIt=False, grid=False, clim=None
    ):
        if self.dim == 3:
            raise NotImplementedError('This is not yet done!')

        import matplotlib.pyplot as plt
        import matplotlib
        from mpl_toolkits.mplot3d import Axes3D
        import matplotlib.colors as colors
        import matplotlib.cm as cmx

        if ax is None:
            ax = plt.subplot(111)

        jet = cm = plt.get_cmap('jet')
        cNorm  = colors.Normalize(
            vmin=I.min() if clim is None else clim[0],
            vmax=I.max() if clim is None else clim[1])

        scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=jet)
        # ax.set_xlim((self.x0[0], self.h[0].sum()))
        # ax.set_ylim((self.x0[1], self.h[1].sum()))

        Nx = self.r(self.gridN[:, 0], 'N', 'N', 'M')
        Ny = self.r(self.gridN[:, 1], 'N', 'N', 'M')
        cell = self.r(I, 'CC', 'CC', 'M')

        for ii in range(self.nCx):
            for jj in range(self.nCy):
                I = [ii, ii+1, ii+1, ii]
                J = [jj, jj, jj+1, jj+1]
                ax.add_patch(plt.Polygon(np.c_[Nx[I, J], Ny[I, J]], facecolor=scalarMap.to_rgba(cell[ii, jj]), edgecolor='k' if grid else 'none'))

        scalarMap._A = []  # http://stackoverflow.com/questions/8342549/matplotlib-add-colorbar-to-a-sequence-of-line-plots
        ax.set_xlabel('x')
        ax.set_ylabel('y')
        if showIt:
            plt.show()
        return [scalarMap]
_venn2.py 文件源码 项目:johnson-county-ddj-public 作者: dssg 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def compute_venn2_colors(set_colors):
    '''
    Given two base colors, computes combinations of colors corresponding to all regions of the venn diagram.
    returns a list of 3 elements, providing colors for regions (10, 01, 11).

    >>> compute_venn2_colors(('r', 'g'))
    (array([ 1.,  0.,  0.]), array([ 0. ,  0.5,  0. ]), array([ 0.7 ,  0.35,  0.  ]))
    '''
    ccv = ColorConverter()
    base_colors = [np.array(ccv.to_rgb(c)) for c in set_colors]
    return (base_colors[0], base_colors[1], mix_colors(base_colors[0], base_colors[1]))
plot_figures.py 文件源码 项目:IDNNs 作者: ravidziv 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def update_line_specipic_points(nums, data, axes, to_do, font_size, axis_font):
    """Update the lines in the axes for snapshot of the whole process"""
    colors =LAYERS_COLORS
    x_ticks = [0, 2, 4, 6, 8, 10]
    #Go over all the snapshot
    for i in range(len(nums)):
        num = nums[i]
        #Plot the right layer
        for layer_num in range(data.shape[3]):
            axes[i].scatter(data[0, :, num, layer_num], data[1, :, num, layer_num], color = colors[layer_num], s = 105,edgecolors = 'black',alpha = 0.85)
        utils.adjustAxes(axes[i], axis_font=axis_font, title_str='', x_ticks=x_ticks, y_ticks=[], x_lim=None,
                         y_lim=None,
                         set_xlabel=to_do[i][0], set_ylabel=to_do[i][1], x_label='$I(X;T)$', y_label='$I(T;Y)$',
                         set_xlim=True, set_ylim=True,
                         set_ticks=True, label_size=font_size)
plot_figures.py 文件源码 项目:IDNNs 作者: ravidziv 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def update_line(num, print_loss, data, axes, epochsInds, test_error, test_data, epochs_bins, loss_train_data, loss_test_data, colors,
                font_size = 18, axis_font=16, x_lim = [0,12.2], y_lim=[0, 1.08], x_ticks = [], y_ticks = []):
    """Update the figure of the infomration plane for the movie"""
    #Print the line between the points
    cmap = ListedColormap(LAYERS_COLORS)
    segs = []
    for i in range(0, data.shape[1]):
        x = data[0, i, num, :]
        y = data[1, i, num, :]
        points = np.array([x, y]).T.reshape(-1, 1, 2)
        segs.append(np.concatenate([points[:-1], points[1:]], axis=1))
    segs = np.array(segs).reshape(-1, 2, 2)
    axes[0].clear()
    if len(axes)>1:
        axes[1].clear()
    lc = LineCollection(segs, cmap=cmap, linestyles='solid',linewidths = 0.3, alpha = 0.6)
    lc.set_array(np.arange(0,5))
    #Print the points
    for layer_num in range(data.shape[3]):
        axes[0].scatter(data[0, :, num, layer_num], data[1, :, num, layer_num], color = colors[layer_num], s = 35,edgecolors = 'black',alpha = 0.85)
    axes[1].plot(epochsInds[:num], 1 - np.mean(test_error[:, :num], axis=0), color ='r')

    title_str = 'Information Plane - Epoch number - ' + str(epochsInds[num])
    utils.adjustAxes(axes[0], axis_font, title_str, x_ticks, y_ticks, x_lim, y_lim, set_xlabel=True, set_ylabel=True,
                     x_label='$I(X;T)$', y_label='$I(T;Y)$')
    title_str = 'Precision as function of the epochs'
    utils.adjustAxes(axes[1], axis_font, title_str, x_ticks, y_ticks, x_lim, y_lim, set_xlabel=True, set_ylabel=True,
                     x_label='# Epochs', y_label='Precision')
plot_figures.py 文件源码 项目:IDNNs 作者: ravidziv 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def plot_animation_each_neuron(name_s, save_name, print_loss=False):
    """Plot the movie for all the networks in the information plane"""
    # If we want to print the loss function also
    #The bins that we extened the x axis of the accuracy each time
    epochs_bins = [0, 500, 1500, 3000, 6000, 10000, 20000]
    data_array = utils.get_data(name_s[0][0])
    data = np.squeeze(data_array['information'])

    f, (axes) = plt.subplots(1, 1)
    axes = [axes]
    f.subplots_adjust(left=0.14, bottom=0.1, right=.928, top=0.94, wspace=0.13, hspace=0.55)
    colors = LAYERS_COLORS
    #new/old version
    Ix = np.squeeze(data[0,:, :, :])
    Iy = np.squeeze(data[1,:, :, :])
    #Interploation of the samplings (because we don't cauclaute the infomration in each epoch)
    #interp_data_x = interp1d(epochsInds,  Ix, axis=1)
    #interp_data_y = interp1d(epochsInds,  Iy, axis=1)
    #new_x = np.arange(0,epochsInds[-1])
    #new_data  = np.array([interp_data_x(new_x), interp_data_y(new_x)])
    """"
    train_data = interp1d(epochsInds,  np.squeeze(train_data), axis=1)(new_x)
    test_data = interp1d(epochsInds,  np.squeeze(test_data), axis=1)(new_x)

    if print_loss:
        loss_train_data =  interp1d(epochsInds,  np.squeeze(loss_train_data), axis=1)(new_x)
        loss_test_data=interp1d(epochsInds,  np.squeeze(loss_test_data), axis=1)(new_x)
    """
    line_ani = animation.FuncAnimation(f, update_line_each_neuron, Ix.shape[1], repeat=False,
                                       interval=1, blit=False, fargs=(print_loss, Ix, axes,Iy,train_data,test_data,epochs_bins, loss_train_data,loss_test_data, colors,epochsInds))
    Writer = animation.writers['ffmpeg']
    writer = Writer(fps=100)
    #Save the movie
    line_ani.save(save_name+'_movie.mp4',writer=writer,dpi=250)
    plt.show()
features.py 文件源码 项目:PCL-ROS-cluster-Segmentation 作者: jupidity 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def rgb_to_hsv(rgb_list):
    rgb_normalized = [1.0*rgb_list[0]/255, 1.0*rgb_list[1]/255, 1.0*rgb_list[2]/255]
    hsv_normalized = matplotlib.colors.rgb_to_hsv([[rgb_normalized]])[0][0]
    return hsv_normalized
features.py 文件源码 项目:PCL-ROS-cluster-Segmentation 作者: jupidity 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def compute_color_histograms(cloud, using_hsv=False):

    numBins = 64
    # Compute histograms for the clusters
    point_colors_list = []

    # Step through each point in the point cloud
    for point in pc2.read_points(cloud, skip_nans=True):
        rgb_list = float_to_rgb(point[3])
        if using_hsv:
            point_colors_list.append(rgb_to_hsv(rgb_list) * 255)
        else:
            point_colors_list.append(rgb_list)

    # Populate lists with color values
    channel_1_vals = []
    channel_2_vals = []
    channel_3_vals = []


    for color in point_colors_list:
        channel_1_vals.append(color[0])
        channel_2_vals.append(color[1])
        channel_3_vals.append(color[2])

    # Compute histograms for the colors in the point cloud
    channel1_hist = np.histogram(channel_1_vals, bins=numBins, range=(0, 256))
    channel2_hist = np.histogram(channel_2_vals, bins=numBins, range=(0, 256))
    channel3_hist = np.histogram(channel_3_vals, bins=numBins, range=(0, 256))



    # Concatenate and normalize the histograms
    hist_features = np.concatenate((channel1_hist[0],channel2_hist[0], channel3_hist[0])).astype(np.float64)
    normed_features = hist_features / np.sum(hist_features)
    return normed_features
principal_component_analysis.py 文件源码 项目:ML-From-Scratch 作者: eriklindernoren 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def main():

    # Demo of how to reduce the dimensionality of the data to two dimension
    # and plot the results. 

    # Load the dataset
    data = datasets.load_digits()
    X = data.data
    y = data.target

    # Project the data onto the 2 primary principal components
    X_trans = PCA().transform(X, 2)

    x1 = X_trans[:, 0]
    x2 = X_trans[:, 1]

    cmap = plt.get_cmap('viridis')
    colors = [cmap(i) for i in np.linspace(0, 1, len(np.unique(y)))]

    class_distr = []
    # Plot the different class distributions
    for i, l in enumerate(np.unique(y)):
        _x1 = x1[y == l]
        _x2 = x2[y == l]
        _y = y[y == l]
        class_distr.append(plt.scatter(_x1, _x2, color=colors[i]))

    # Add a legend
    plt.legend(class_distr, y, loc=1)

    # Axis labels
    plt.suptitle("PCA Dimensionality Reduction")
    plt.title("Digit Dataset")
    plt.xlabel('Principal Component 1')
    plt.ylabel('Principal Component 2')
    plt.show()
misc.py 文件源码 项目:ML-From-Scratch 作者: eriklindernoren 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plot_in_2d(self, X, y=None, title=None, accuracy=None, legend_labels=None):
        X_transformed = self._transform(X, dim=2)
        x1 = X_transformed[:, 0]
        x2 = X_transformed[:, 1]
        class_distr = []

        y = np.array(y).astype(int)

        colors = [self.cmap(i) for i in np.linspace(0, 1, len(np.unique(y)))]

        # Plot the different class distributions
        for i, l in enumerate(np.unique(y)):
            _x1 = x1[y == l]
            _x2 = x2[y == l]
            _y = y[y == l]
            class_distr.append(plt.scatter(_x1, _x2, color=colors[i]))

        # Plot legend
        if not legend_labels is None: 
            plt.legend(class_distr, legend_labels, loc=1)

        # Plot title
        if title:
            if accuracy:
                perc = 100 * accuracy
                plt.suptitle(title)
                plt.title("Accuracy: %.1f%%" % perc, fontsize=10)
            else:
                plt.title(title)

        # Axis labels
        plt.xlabel('Principal Component 1')
        plt.ylabel('Principal Component 2')

        plt.show()

    # Plot the dataset X and the corresponding labels y in 3D using PCA.
matplotlib.py 文件源码 项目:physt 作者: janpipek 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def bar3d(h2, ax, **kwargs):
    """Plot of 2D histograms as 3D boxes.

    Parameters
    ----------
    h2 : Histogram2D

    Returns
    -------
    plt.Axes
    """
    density = kwargs.pop("density", False)
    data = get_data(h2, cumulative=False, flatten=True, density=density)
    # transformed = transform_data(data, kwargs)

    if "cmap" in kwargs:
        cmap = _get_cmap(kwargs)
        _, cmap_data = _get_cmap_data(data, kwargs)
        colors = cmap(cmap_data)
    else:
        colors = kwargs.pop("color", "blue")

    xpos, ypos = (arr.flatten() for arr in h2.get_bin_centers())
    zpos = np.zeros_like(ypos)
    dx, dy = (arr.flatten() for arr in h2.get_bin_widths())

    _add_labels(ax, h2, kwargs)
    ax.bar3d(xpos, ypos, zpos, dx, dy, data, color=colors, **kwargs)
    ax.set_zlabel("density" if density else "frequency")

    return ax
matplotlib.py 文件源码 项目:physt 作者: janpipek 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def polar_map(hist, ax, show_zero=True, **kwargs):
    """Polar map of polar histograms.

    Similar to map, but supports less parameters.

    Returns
    -------
    plt.Axes
    """
    data = get_data(hist, cumulative=False, flatten=True,
                    density=kwargs.pop("density", False))
    # transformed = transform_data(data, kwargs)

    cmap = _get_cmap(kwargs)
    norm, cmap_data = _get_cmap_data(data, kwargs)
    colors = cmap(cmap_data)

    rpos, phipos = (arr.flatten() for arr in hist.get_bin_left_edges())
    dr, dphi = (arr.flatten() for arr in hist.get_bin_widths())
    rmax, _ = (arr.flatten() for arr in hist.get_bin_right_edges())

    bar_args = {}
    if "zorder" in kwargs:
        bar_args["zorder"] = kwargs.pop("zorder")

    alphas = _get_alpha_data(cmap_data, kwargs)
    if np.isscalar(alphas):
        alphas = np.ones_like(data) * alphas

    for i in range(len(rpos)):
        if data[i] > 0 or show_zero:
            bin_color = colors[i]
            # TODO: align = "edge"
            bars = ax.bar(phipos[i], dr[i], width=dphi[i], bottom=rpos[i], color=bin_color,
                          edgecolor=kwargs.get("grid_color", cmap(0.5)), lw=kwargs.get("lw", 0.5),
                          alpha=alphas[i], **bar_args)

    ax.set_rmax(rmax.max())
    return ax
matplotlib.py 文件源码 项目:physt 作者: janpipek 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _get_cmap_data(data, kwargs):
    """Get normalized values to be used with a colormap.

    Parameters
    ----------
    data : array_like
    cmap_min : Optional[float] or "min"
        By default 0. If "min", minimum value of the data.
    cmap_max : Optional[float]
        By default, maximum value of the data
    cmap_normalize : str or colors.Normalize

    Returns
    -------
    normalizer : colors.Normalize
    normalized_data : array_like
    """
    norm = kwargs.pop("cmap_normalize", None)
    if norm == "log":
        cmap_max = kwargs.pop("cmap_max", data.max())
        cmap_min = kwargs.pop("cmap_min", data[data > 0].min())
        norm = colors.LogNorm(cmap_min, cmap_max)
    elif not norm:
        cmap_max = kwargs.pop("cmap_max", data.max())
        cmap_min = kwargs.pop("cmap_min", 0)
        if cmap_min == "min":
            cmap_min = data.min()
        norm = colors.Normalize(cmap_min, cmap_max, clip=True)
    return norm, norm(data)
matplotlib.py 文件源码 项目:physt 作者: janpipek 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _add_colorbar(ax, cmap, cmap_data, norm):
    """Show a colorbar right of the plot.

    Parameters
    ----------
    ax : plt.Axes
    cmap : colors.Colormap
    cmap_data : array_like
    norm : colors.Normalize
    """
    fig = ax.get_figure()
    mappable = cm.ScalarMappable(cmap=cmap, norm=norm)
    mappable.set_array(cmap_data)   # TODO: Or what???
    fig.colorbar(mappable, ax=ax)
plot_modifications.py 文件源码 项目:yt 作者: yt-project 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __init__(self, line_width=0.002, alpha = 1.0, color='black'):
        from matplotlib.colors import ColorConverter
        conv = ColorConverter()
        PlotCallback.__init__(self)
        self.line_width = line_width
        self.alpha = alpha
        self.color = (np.array(conv.to_rgb(color)) * 255).astype("uint8")
vis.py 文件源码 项目:RVO_Py_MAS 作者: MengGuo 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def get_cmap(N):
    '''Returns a function that maps each index in 0, 1, ... N-1 to a distinct RGB color.'''
    color_norm  = colors.Normalize(vmin=0, vmax=N-1)
    scalar_map = cmx.ScalarMappable(norm=color_norm, cmap='hsv') 
    def map_index_to_rgb_color(index):
        return scalar_map.to_rgba(index)
    return map_index_to_rgb_color
test_factor_analysis.py 文件源码 项目:cgpm 作者: probcomp 项目源码 文件源码 阅读 48 收藏 0 点赞 0 评论 0
def scatter_classes(x, classes, ax=None):
    """Scatter the data points coloring by the classes."""
    if ax is None:
        _fig, ax = plt.subplots()
    ax = plt.gca() if ax is None else ax
    cmap = matplotlib.cm.jet
    norm = matplotlib.colors.Normalize(
        vmin=np.min(classes), vmax=np.max(classes))
    mapper = matplotlib.cm.ScalarMappable(cmap=cmap, norm=norm)
    colors = mapper.to_rgba(classes)
    ax.scatter(x[:,0], x[:,1], color=colors)
    return ax


问题


面经


文章

微信
公众号

扫码关注公众号