python类pyplot()的实例源码

test_method_examples.py 文件源码 项目:smt 作者: SMTorg 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_kpls(self):
        import numpy as np
        import matplotlib.pyplot as plt

        from smt.methods import KPLS

        xt = np.array([0., 1., 2., 3., 4.])
        yt = np.array([0., 1., 1.5, 0.5, 1.0])

        sm = KPLS(theta0=[1e-2])
        sm.set_training_values(xt, yt)
        sm.train()

        num = 100
        x = np.linspace(0., 4., num)
        y = sm.predict_values(x)

        plt.plot(xt, yt, 'o')
        plt.plot(x, y)
        plt.xlabel('x')
        plt.ylabel('y')
        plt.legend(['Training data', 'Prediction'])
        plt.show()
test_method_examples.py 文件源码 项目:smt 作者: SMTorg 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_kplsk(self):
        import numpy as np
        import matplotlib.pyplot as plt

        from smt.methods import KPLSK

        xt = np.array([0., 1., 2., 3., 4.])
        yt = np.array([0., 1., 1.5, 0.5, 1.0])

        sm = KPLSK(theta0=[1e-2])
        sm.set_training_values(xt, yt)
        sm.train()

        num = 100
        x = np.linspace(0., 4., num)
        y = sm.predict_values(x)
        yy = sm.predict_derivatives(xt,0)
        plt.plot(xt, yt, 'o')
        plt.plot(x, y)
        plt.xlabel('x')
        plt.ylabel('y')
        plt.legend(['Training data', 'Prediction'])
        plt.show()
test_sampling_examples.py 文件源码 项目:smt 作者: SMTorg 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_random(self):
        import numpy as np
        import matplotlib.pyplot as plt

        from smt.sampling import Random

        xlimits = np.array([
            [0., 4.],
            [0., 3.],
        ])
        sampling = Random(xlimits=xlimits)

        num = 50
        x = sampling(num)

        print(x.shape)

        plt.plot(x[:, 0], x[:, 1], 'o')
        plt.xlabel('x')
        plt.ylabel('y')
        plt.show()
test_sampling_examples.py 文件源码 项目:smt 作者: SMTorg 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_lhs(self):
        import numpy as np
        import matplotlib.pyplot as plt

        from smt.sampling import LHS

        xlimits = np.array([
            [0., 4.],
            [0., 3.],
        ])
        sampling = LHS(xlimits=xlimits)

        num = 50
        x = sampling(num)

        print(x.shape)

        plt.plot(x[:, 0], x[:, 1], 'o')
        plt.xlabel('x')
        plt.ylabel('y')
        plt.show()
test_sampling_examples.py 文件源码 项目:smt 作者: SMTorg 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_full_factorial(self):
        import numpy as np
        import matplotlib.pyplot as plt

        from smt.sampling import FullFactorial

        xlimits = np.array([
            [0., 4.],
            [0., 3.],
        ])
        sampling = FullFactorial(xlimits=xlimits)

        num = 50
        x = sampling(num)

        print(x.shape)

        plt.plot(x[:, 0], x[:, 1], 'o')
        plt.xlabel('x')
        plt.ylabel('y')
        plt.show()
PlottingOutliers.py 文件源码 项目:MarksPredictor-AzureMachineLearning 作者: keshav123456 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def auto_scatter_outlier(df, plot_cols):
    import matplotlib.pyplot as plt
    outlier = [0,0,1,1] # Vector of outlier indicators
    color = ['DarkBlue','DarkBlue','Red','Red'] # vector of color choices for plot
    marker = ['x','o','o','x'] # vector of shape choices for plot
    for col in plot_cols: # loop over the columns
        fig = plt.figure(figsize=(6, 6))
        ax = fig.gca()
        ## Loop over the zip of the four vectors an subset the data and
        ## create the plot using the aesthetics provided
        for o, c, m in zip(outlier, color, marker):
            temp = df.ix[(df['outlier'] == o)]           
            if temp.shape[0] > 0:                    
                temp.plot(kind = 'scatter', x = col, y = 'Marks' , 
                           ax = ax, color = c, marker = m)                                 
        ax.set_title('Scatter plot of marks vs. ' + col)
        fig.savefig('scatter_' + col + '.png')
    return plot_cols
ipython_directive.py 文件源码 项目:Repobot 作者: Desgard 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def ensure_pyplot(self):
        """
        Ensures that pyplot has been imported into the embedded IPython shell.

        Also, makes sure to set the backend appropriately if not set already.

        """
        # We are here if the @figure pseudo decorator was used. Thus, it's
        # possible that we could be here even if python_mplbackend were set to
        # `None`. That's also strange and perhaps worthy of raising an
        # exception, but for now, we just set the backend to 'agg'.

        if not self._pyplot_imported:
            if 'matplotlib.backends' not in sys.modules:
                # Then ipython_matplotlib was set to None but there was a
                # call to the @figure decorator (and ipython_execlines did
                # not set a backend).
                #raise Exception("No backend was set, but @figure was used!")
                import matplotlib
                matplotlib.use('agg')

            # Always import pyplot into embedded shell.
            self.process_input_line('import matplotlib.pyplot as plt',
                                    store_history=False)
            self._pyplot_imported = True
pylabtools.py 文件源码 项目:Repobot 作者: Desgard 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def activate_matplotlib(backend):
    """Activate the given backend and set interactive to True."""

    import matplotlib
    matplotlib.interactive(True)

    # Matplotlib had a bug where even switch_backend could not force
    # the rcParam to update. This needs to be set *before* the module
    # magic of switch_backend().
    matplotlib.rcParams['backend'] = backend

    import matplotlib.pyplot
    matplotlib.pyplot.switch_backend(backend)

    # This must be imported last in the matplotlib series, after
    # backend/interactivity choices have been made
    import matplotlib.pyplot as plt

    plt.show._needmain = False
    # We need to detect at runtime whether show() is called by the user.
    # For this, we wrap it into a decorator which adds a 'called' flag.
    plt.draw_if_interactive = flag_calls(plt.draw_if_interactive)
faster_rcnn_conv5.py 文件源码 项目:tf-Faster-RCNN 作者: kevinjliang 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def vis_detections(self, im, class_name, gt_boxes, dets):
        """Visual debugging of detections."""
        import matplotlib
        matplotlib.use('TkAgg')  # For Mac OS
        import matplotlib.pyplot as plt
        import matplotlib.patches as patches
        fig, ax = plt.subplots(1)
        for i in range(np.minimum(10, dets.shape[0])):
            bbox = dets[i,1:]
            print(bbox)
            ax.imshow(np.squeeze(im), cmap="gray")
            self.plot_patch(ax, patches, bbox, gt=False)
        plt.title(class_name)
        self.plot_patch(ax, patches, gt_boxes[0][:4], gt=True)

        # Display Final composite image
        plt.show()
plot_heatmaps.py 文件源码 项目:pyembedding 作者: cobeylab 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def plot_func(cause, effect, seasonal, different, heatmap_func, title):
    heatmap = numpy.zeros((len(sigma01_vals), len(sd_proc_vals)))

    eps = eps_vals[seasonal]
    beta00 = beta00_vals[different]

    for i, sigma01 in enumerate(sigma01_vals):
        for j, sd_proc in enumerate(sd_proc_vals):
            heatmap[i,j] = heatmap_func(cause, effect, eps, beta00, sigma01, sd_proc)
    print heatmap

    plot_heatmap(heatmap,
        'sd_proc', ['{0:.2g}'.format(x) for x in sd_proc_vals],
        'sigma01', ['{0:.2g}'.format(y) for y in sigma01_vals],
        vmin=0, vmax=1
    )
    pyplot.title('{}: {} causes {}'.format(title, cause, effect))
main.py 文件源码 项目:cryptoverse-probe 作者: Cryptoverse 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def render_systems(params=None):
    figure = pyplot.figure()
    axes = figure.add_subplot(111, projection='3d')

    for currentSystem in database.get_star_log_hashes(from_highest=True):
        current_position = util.get_cartesian(currentSystem)
        xs = [current_position[0], current_position[0]]
        ys = [current_position[1], current_position[1]]
        zs = [0, current_position[2]]
        axes.plot(xs, ys, zs)
        axes.scatter(current_position[0], current_position[1], current_position[2], label=util.get_system_name(currentSystem))

    axes.legend()
    axes.set_title('Systems')
    axes.set_xlabel('X')
    axes.set_ylabel('Y')
    axes.set_zlabel('Z')

    pyplot.show()
thinkplot.py 文件源码 项目:iota 作者: amaneureka 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def Plot(obj, ys=None, style='', **options):
    """Plots a line.

    Args:
      obj: sequence of x values, or Series, or anything with Render()
      ys: sequence of y values
      style: style string passed along to pyplot.plot
      options: keyword args passed to pyplot.plot
    """
    options = _UnderrideColor(options)
    label = getattr(obj, 'label', '_nolegend_')
    options = _Underride(options, linewidth=3, alpha=0.8, label=label)

    xs = obj
    if ys is None:
        if hasattr(obj, 'Render'):
            xs, ys = obj.Render()
        if isinstance(obj, pandas.Series):
            ys = obj.values
            xs = obj.index

    if ys is None:
        pyplot.plot(xs, style, **options)
    else:
        pyplot.plot(xs, ys, style, **options)
thinkplot.py 文件源码 项目:iota 作者: amaneureka 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def Pcolor(xs, ys, zs, pcolor=True, contour=False, **options):
    """Makes a pseudocolor plot.

    xs:
    ys:
    zs:
    pcolor: boolean, whether to make a pseudocolor plot
    contour: boolean, whether to make a contour plot
    options: keyword args passed to pyplot.pcolor and/or pyplot.contour
    """
    _Underride(options, linewidth=3, cmap=matplotlib.cm.Blues)

    X, Y = np.meshgrid(xs, ys)
    Z = zs

    x_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
    axes = pyplot.gca()
    axes.xaxis.set_major_formatter(x_formatter)

    if pcolor:
        pyplot.pcolormesh(X, Y, Z, **options)

    if contour:
        cs = pyplot.contour(X, Y, Z, **options)
        pyplot.clabel(cs, inline=1, fontsize=10)
ipython_directive.py 文件源码 项目:mathpy 作者: aschleg 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def ensure_pyplot(self):
        """
        Ensures that pyplot has been imported into the embedded IPython shell.

        Also, makes sure to set the backend appropriately if not set already.

        """
        # We are here if the @figure pseudo decorator was used. Thus, it's
        # possible that we could be here even if python_mplbackend were set to
        # `None`. That's also strange and perhaps worthy of raising an
        # exception, but for now, we just set the backend to 'agg'.

        if not self._pyplot_imported:
            if 'matplotlib.backends' not in sys.modules:
                # Then ipython_matplotlib was set to None but there was a
                # call to the @figure decorator (and ipython_execlines did
                # not set a backend).
                #raise Exception("No backend was set, but @figure was used!")
                import matplotlib
                matplotlib.use('agg')

            # Always import pyplot into embedded shell.
            self.process_input_line('import matplotlib.pyplot as plt',
                                    store_history=False)
            self._pyplot_imported = True
reader.py 文件源码 项目:PaddleDNN 作者: fty8788 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def feature_range(maximums, minimums):
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt
    fig, ax = plt.subplots()
    feature_num = len(maximums)
    ax.bar(range(feature_num), maximums - minimums, color='r', align='center')
    ax.set_title('feature scale')
    plt.xticks(range(feature_num), feature_names)
    plt.xlim([-1, feature_num])
    fig.set_figheight(6)
    fig.set_figwidth(10)
    if not os.path.exists('./image'):
        os.makedirs('./image')
    fig.savefig('image/ranges.png', dpi=48)
    plt.close(fig)
utils.py 文件源码 项目:decoding_challenge_cortana_2016_3rd 作者: kingjr 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _prepare_trellis(n_cells, max_col):
    """Aux function
    """
    import matplotlib.pyplot as plt
    if n_cells == 1:
        nrow = ncol = 1
    elif n_cells <= max_col:
        nrow, ncol = 1, n_cells
    else:
        nrow, ncol = int(math.ceil(n_cells / float(max_col))), max_col

    fig, axes = plt.subplots(nrow, ncol, figsize=(7.4, 1.5 * nrow + 1))
    axes = [axes] if ncol == nrow == 1 else axes.flatten()
    for ax in axes[n_cells:]:  # hide unused axes
        # XXX: Previously done by ax.set_visible(False), but because of mpl
        # bug, we just hide the frame.
        from .topomap import _hide_frame
        _hide_frame(ax)
    return fig, axes
utils.py 文件源码 项目:decoding_challenge_cortana_2016_3rd 作者: kingjr 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def figure_nobar(*args, **kwargs):
    """Make matplotlib figure with no toolbar"""
    from matplotlib import rcParams, pyplot as plt
    old_val = rcParams['toolbar']
    try:
        rcParams['toolbar'] = 'none'
        fig = plt.figure(*args, **kwargs)
        # remove button press catchers (for toolbar)
        cbs = list(fig.canvas.callbacks.callbacks['key_press_event'].keys())
        for key in cbs:
            fig.canvas.callbacks.disconnect(key)
    except Exception as ex:
        raise ex
    finally:
        rcParams['toolbar'] = old_val
    return fig
utils.py 文件源码 项目:decoding_challenge_cortana_2016_3rd 作者: kingjr 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def plot_clicks(self, **kwargs):
        """Plot the x/y positions stored in self.coords.

        Parameters
        ----------
        **kwargs : dict
            Arguments are passed to imshow in displaying the bg image.
        """
        from matplotlib.pyplot import subplots
        f, ax = subplots()
        ax.imshow(self.imdata, extent=(0, self.xmax, 0, self.ymax), **kwargs)
        xlim, ylim = [ax.get_xlim(), ax.get_ylim()]
        xcoords, ycoords = zip(*self.coords)
        ax.scatter(xcoords, ycoords, c='r')
        ann_text = np.arange(len(self.coords)).astype(str)
        for txt, coord in zip(ann_text, self.coords):
            ax.annotate(txt, coord, fontsize=20, color='r')
        ax.set_xlim(xlim)
        ax.set_ylim(ylim)
        plt_show()
clusterplot.py 文件源码 项目:IgDiscover 作者: NBISweden 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def plot_clustermap(sequences, title, plotpath, size=300, dpi=200):
    """
    Plot a clustermap of the given sequences

    size -- Downsample to this many sequences
    title -- plot title

    Return the number of clusters.
    """
    logger.info('Clustering %d sequences (downsampled to at most %d)', len(sequences), size)
    sequences = downsampled(sequences, size)
    df, linkage, clusters = cluster_sequences(sequences)

    palette = sns.color_palette([(0.15, 0.15, 0.15)])
    palette += sns.color_palette('Spectral', n_colors=max(clusters), desat=0.9)
    row_colors = [ palette[cluster_id] for cluster_id in clusters ]
    cm = sns.clustermap(df,
            row_linkage=linkage,
            col_linkage=linkage,
            row_colors=row_colors,
            linewidths=None,
            linecolor='none',
            figsize=(210/25.4, 210/25.4),
            cmap='Blues',
            xticklabels=False,
            yticklabels=False
    )
    if title is not None:
        cm.fig.suptitle(title)
    cm.savefig(plotpath, dpi=dpi)

    # free the memory used by the plot
    import matplotlib.pyplot as plt
    plt.close('all')

    return len(set(clusters))
tip_tilt_2_axes_test.py 文件源码 项目:pi_gcs 作者: lbusoni 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _savePlot(self, data, filename):
        import matplotlib
        matplotlib.use('Agg')
        import matplotlib.pyplot as plt

        plt.plot(data)
        plt.savefig(filename)


问题


面经


文章

微信
公众号

扫码关注公众号