python类use()的实例源码

count.py 文件源码 项目:IgDiscover 作者: NBISweden 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def plot_counts(counts, gene_type):
    """Plot expression counts. Return a Figure object"""
    import matplotlib
    matplotlib.use('agg')
    import matplotlib.pyplot as plt
    import seaborn as sns
    import numpy as np

    fig = plt.figure(figsize=((50 + len(counts) * 5) / 25.4, 210/25.4))
    matplotlib.rcParams.update({'font.size': 14})
    ax = fig.gca()
    ax.set_title('{} gene usage'.format(gene_type))
    ax.set_xlabel('{} gene'.format(gene_type))
    ax.set_ylabel('Count')
    ax.set_xticks(np.arange(len(counts)) + 0.5)
    ax.set_xticklabels(counts.index, rotation='vertical')
    ax.grid(axis='x')
    ax.set_xlim((-0.25, len(counts)))
    ax.bar(np.arange(len(counts)), counts['count'])
    fig.set_tight_layout(True)
    return fig
gui.py 文件源码 项目:StochOPy 作者: keurfonluu 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def main():
    """
    Start StochOPy Viewer window.
    """
    import matplotlib
    matplotlib.use("TkAgg")
    from sys import platform as _platform

    root = tk.Tk()
    root.resizable(0, 0)
    StochOGUI(root)
    s = ttk.Style()
    if _platform == "win32":
        s.theme_use("vista")
    elif _platform in [ "linux", "linux2" ]:
        s.theme_use("alt")
    elif _platform == "darwin":
        s.theme_use("aqua")
    root.mainloop()
supernova.py 文件源码 项目:cellranger 作者: 10XGenomics 项目源码 文件源码 阅读 47 收藏 0 点赞 0 评论 0
def nice_labels ( numbers ):
    suffixes = ['', 'K', 'M', 'G']
    suff_len = []
    ## figure out which suffix gives us the shortest label length
    for i, suff in enumerate( suffixes ):
        test   = [float(y)/(1000.0**i) for y in numbers]
        labels = ["%d%s"% (int(y), suff) for y in test]
        ## make sure that in the new representation there are no
        ## degenerate cases
        if len(set(labels)) == len(labels):
            suff_len.append( (sum(map(len, labels)), i) )
    ## if we fail to find any satisfactory suffixes, just use defaults
    if len(suff_len) == 0:
        return map(str, numbers), 0
    else:
        suff_len.sort()
        i = suff_len[0][1]
        labels = ["%d%s"% (int(float(y)/(1000.0**i)), suffixes[i]) for y in numbers]
    return labels, i
qqhtml.py 文件源码 项目:qqmbr 作者: ischurov 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def format(self, content: Optional[QqTag],
               blanks_to_pars=True,
               keep_end_pars=True) -> str:
        """
        :param content: could be QqTag or any iterable of QqTags
        :param blanks_to_pars: use blanks_to_pars (True or False)
        :param keep_end_pars: keep end paragraphs
        :return: str: text of tag
        """
        if content is None:
            return ""

        out = []

        for child in content:
            if isinstance(child, str):
                if blanks_to_pars:
                    out.append(self.blanks_to_pars(html_escape(
                        child, keep_end_pars)))
                else:
                    out.append(html_escape(child))
            else:
                out.append(self.handle(child))
        return "".join(out)
qqhtml.py 文件源码 项目:qqmbr 作者: ischurov 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def url_for_chapter(self, index=None, label=None,
                        fromindex=None) -> str:
        """
        Returns url for chapter. Either index or label of
        the target chapter have to be provided.
        Optionally, fromindex can be provided. In this case
        function will return empty string if
        target chapter coincides with current one.

        You can inherit from QqHTMLFormatter and override
        url_for_chapter_by_index and url_for_chapter_by_label too
        use e.g. Flask's url_for.
        """
        assert index is not None or label is not None
        if index is None:
            index = self.label_to_chapter[label]
        if fromindex is not None and fromindex == index:
            # we are already on the right page
            return ""
        if label is None:
            label = self.chapters[index].heading.find("label")
        if not label:
            return self.url_for_chapter_by_index(index)
        return self.url_for_chapter_by_label(label.value)
visualize.py 文件源码 项目:KATE 作者: hugochan 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def word_cloud(word_embedding_matrix, vocab, s, save_file='scatter.png'):
    words = [(i, vocab[i]) for i in s]
    model = TSNE(n_components=2, random_state=0)
    #Note that the following line might use a good chunk of RAM
    tsne_embedding = model.fit_transform(word_embedding_matrix)
    words_vectors = tsne_embedding[np.array([item[1] for item in words])]

    plt.subplots_adjust(bottom = 0.1)
    plt.scatter(
        words_vectors[:, 0], words_vectors[:, 1], marker='o', cmap=plt.get_cmap('Spectral'))

    for label, x, y in zip(s, words_vectors[:, 0], words_vectors[:, 1]):
        plt.annotate(
            label,
            xy=(x, y), xytext=(-20, 20),
            textcoords='offset points', ha='right', va='bottom',
            fontsize=20,
            # bbox=dict(boxstyle='round,pad=1.', fc='yellow', alpha=0.5),
            arrowprops=dict(arrowstyle = '<-', connectionstyle='arc3,rad=0')
            )
    plt.show()
    # plt.savefig(save_file)
redwood.py 文件源码 项目:pauvre 作者: conchoecia 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def fix_query_reflength(sequence_length, queries, doubled):
    """
    arguments:
     <sequence_length> This is the reference fasta length. It should be 2x the actual
               length of the reference since this program takes a sam file from
               a concatenated reference.
     <queries> This is a list of SQL-type query strings. This is generated
                from argparse.

    purpose:
     This function takes in a list of queries to use for read filtering
     for the redwood plot. It is often not advisable to plot all mapped reads
     since many of them are too small relative to the reference length. Also,
     the point of a death star plot is to show continuity of a circular
     reference, so short reads aren't very helpful there either.

     Currently, this function only recognizes the keyword argument 'reflength'.
    """
    if not doubled:
        sequence_length = int(sequence_length * 2)
    for i in range(len(queries)):
        if 'reflength' in queries[i].split():
            queries[i] = queries[i].replace('reflength', str(int(sequence_length/2)))
run.py 文件源码 项目:handwritten-sequence-tensorflow 作者: johnsmithm 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def fast_run(args):
    model = Model(args)
    feed = {}
    #feed[model.train_batch]=False
    xx,ss,yy=model.inputs(args.input_path)

    sess = tf.Session()
    init = tf.global_variables_initializer()
    sess.run(init)
    tf.train.start_queue_runners(sess=sess)
    xxx,sss,yyy=sess.run([xx,ss,yy])
    #print(yyy)
    #print(yyy[1])
    print('len:',xxx.shape)
    import matplotlib.cm as cm
    import matplotlib as mpl
    mpl.use('Agg')
    import matplotlib.pyplot as plt
    plt.figure(figsize=(16,4))
    #plt.imshow()
    plt.imshow(np.asarray(xxx[0]).reshape((36,90))+0.5, interpolation='nearest', aspect='auto', cmap=cm.jet)
    plt.savefig("img.jpg")
    plt.clf() ; plt.cla()
vae_plots.py 文件源码 项目:pyro 作者: uber 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def plot_tsne(z_mu, classes, name):
    import numpy as np
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt
    from sklearn.manifold import TSNE
    model_tsne = TSNE(n_components=2, random_state=0)
    z_states = z_mu.data.cpu().numpy()
    z_embed = model_tsne.fit_transform(z_states)
    classes = classes.data.cpu().numpy()
    fig666 = plt.figure()
    for ic in range(10):
        ind_vec = np.zeros_like(classes)
        ind_vec[:, ic] = 1
        ind_class = classes[:, ic] == 1
        color = plt.cm.Set1(ic)
        plt.scatter(z_embed[ind_class, 0], z_embed[ind_class, 1], s=10, color=color)
        plt.title("Latent Variable T-SNE per Class")
        fig666.savefig('./vae_results/'+str(name)+'_embedding_'+str(ic)+'.png')
    fig666.savefig('./vae_results/'+str(name)+'_embedding.png')
install.py 文件源码 项目:zgtoolkits 作者: xuzhougeng 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _set_matplotlib_default_backend():
    """
    matplotlib will try to print to a display if it is available, but don't want
    to run it in interactive mode. we tried setting the backend to 'Agg'' before
    importing, but it was still resulting in issues. we replace the existing
    backend with 'agg' in the default matplotlibrc. This is a hack until we can
    find a better solution
    """
    if _matplotlib_installed():
        import matplotlib
        matplotlib.use('Agg', force=True)
        config = matplotlib.matplotlib_fname()
        with file_transaction(config) as tx_out_file:
            with open(config) as in_file, open(tx_out_file, "w") as out_file:
                for line in in_file:
                    if line.split(":")[0].strip() == "backend":
                        out_file.write("backend: agg\n")
                    else:
                        out_file.write(line)
train_lstm_multivariate.py 文件源码 项目:TensorFlow-Time-Series-Examples 作者: hzy46 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, num_units, num_features, dtype=tf.float32):
    """Initialize/configure the model object.
    Note that we do not start graph building here. Rather, this object is a
    configurable factory for TensorFlow graphs which are run by an Estimator.
    Args:
      num_units: The number of units in the model's LSTMCell.
      num_features: The dimensionality of the time series (features per
        timestep).
      dtype: The floating point data type to use.
    """
    super(_LSTMModel, self).__init__(
        # Pre-register the metrics we'll be outputting (just a mean here).
        train_output_names=["mean"],
        predict_output_names=["mean"],
        num_features=num_features,
        dtype=dtype)
    self._num_units = num_units
    # Filled in by initialize_graph()
    self._lstm_cell = None
    self._lstm_cell_run = None
    self._predict_from_lstm_output = None
train_lstm.py 文件源码 项目:TensorFlow-Time-Series-Examples 作者: hzy46 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def __init__(self, num_units, num_features, dtype=tf.float32):
    """Initialize/configure the model object.
    Note that we do not start graph building here. Rather, this object is a
    configurable factory for TensorFlow graphs which are run by an Estimator.
    Args:
      num_units: The number of units in the model's LSTMCell.
      num_features: The dimensionality of the time series (features per
        timestep).
      dtype: The floating point data type to use.
    """
    super(_LSTMModel, self).__init__(
        # Pre-register the metrics we'll be outputting (just a mean here).
        train_output_names=["mean"],
        predict_output_names=["mean"],
        num_features=num_features,
        dtype=dtype)
    self._num_units = num_units
    # Filled in by initialize_graph()
    self._lstm_cell = None
    self._lstm_cell_run = None
    self._predict_from_lstm_output = None
utils.py 文件源码 项目:ngraph 作者: NervanaSystems 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def save_plot(niters, loss, args):
    print('Saving training loss-iteration figure...')
    try:
        import matplotlib
        matplotlib.use('Agg')
        import matplotlib.pyplot as plt

        name = 'Train-{}_hs-{}_lr-{}_bs-{}'.format(args.train_file, args.hs,
                                                   args.lr, args.batch_size)
        plt.title(name)
        plt.plot(niters, loss)
        plt.xlabel('iteration')
        plt.ylabel('loss')
        plt.savefig(name + '.jpg')
        print('{} saved!'.format(name + '.jpg'))

    except ImportError:
        print('matplotlib not installed and no figure is saved.')
dfgui.py 文件源码 项目:PandasDataFrameGUI 作者: bluenote10 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def redraw(self):
        column_index1 = self.combo_box1.GetSelection()
        column_index2 = self.combo_box2.GetSelection()
        if column_index1 != wx.NOT_FOUND and column_index1 != 0 and \
           column_index2 != wx.NOT_FOUND and column_index2 != 0:
            # subtract one to remove the neutral selection index
            column_index1 -= 1
            column_index2 -= 1
            df = self.df_list_ctrl.get_filtered_df()

            # It looks like using pandas dataframe.plot causes something weird to
            # crash in wx internally. Therefore we use plain axes.plot functionality.
            # column_name1 = self.columns[column_index1]
            # column_name2 = self.columns[column_index2]
            # df.plot(kind='scatter', x=column_name1, y=column_name2)

            if len(df) > 0:
                self.axes.clear()
                self.axes.plot(df.iloc[:, column_index1].values, df.iloc[:, column_index2].values, 'o', clip_on=False)

                self.canvas.draw()
generate.py 文件源码 项目:Tacotron_pytorch 作者: root20 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def saveAttention(input_sentence, attentions, outpath):
    # Set up figure with colorbar
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt
    import matplotlib.ticker as ticker

    fig = plt.figure(figsize=(24,10), )
    ax = fig.add_subplot(111)
    cax = ax.matshow(attentions.cpu().numpy(), cmap='bone')
    fig.colorbar(cax)

    if input_sentence:
        # Set up axes
        ax.set_yticklabels([' '] + list(input_sentence) + [' '])
        # Show label at every tick
        ax.yaxis.set_major_locator(ticker.MultipleLocator(1))

    plt.tight_layout()
    plt.savefig(outpath)
    plt.close('all')
block.py 文件源码 项目:bifrost 作者: ledatelescope 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def __init__(self, gulp_size=1048576, core=-1):
        """
        @param[in] input_ring Ring containing a 1d
            timeseries
        @param[out] output_ring Ring will contain a 1d
            timeseries that will be cleaned of RFI
        @param[in] core Which OpenMP core to use for
            this block. (-1 is any)
        """
        super(KurtosisBlock, self).__init__()
        self.gulp_size = gulp_size
        self.core = core
        self.output_header = {}
        self.settings = {}
        self.nchan = 1
        self.dtype = np.uint8
block.py 文件源码 项目:bifrost 作者: ledatelescope 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def __init__(
            self, bins, period=1e-3,
            gulp_size=4096 * 256, dispersion_measure=0,
            core=-1):
        """
        @param[in] bins The total number of bins to fold into
        @param[in] period Period to fold over (s)
        @param[in] gulp_size How many bytes of the ring to
            read at once.
        @param[in] dispersion_measure DM of the desired
            source (pc cm^-3)
        @param[in] core Which OpenMP core to use for
            this block. (-1 is any)
        """
        super(FoldBlock, self).__init__()
        self.bins = bins
        self.gulp_size = gulp_size
        self.period = period
        self.dispersion_measure = dispersion_measure
        self.core = core
        self.data_settings = {}
block.py 文件源码 项目:bifrost 作者: ledatelescope 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def __init__(
            self, ring, imagename,
            core=-1, gulp_nframe=4096):
        """
        @param[in] ring Ring containing a multichannel
            timeseries
        @param[in] imagename Filename to store the
            waterfall image
        @param[in] core Which OpenMP core to use for
            this block. (-1 is any)
        @param[in] gulp_size How many bytes of the ring to
            read at once.
        """
        self.ring = ring
        self.imagename = imagename
        self.core = core
        self.gulp_nframe = gulp_nframe
        self.header = {}
visualizer.py 文件源码 项目:coquery 作者: gkunter 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_palette(self):
        """
        Return a palette that is suitable for the data.
        """
        # choose the "Paired" palette if the number of grouping factor
        # levels is even and below 13, or the "Set3" palette otherwise:
        if len(self._levels) == 0:
            if len(self._groupby) == 1:
                return sns.color_palette("Paired")[0]
            else:
                palette_name = "Paired"
        elif len(self._levels[-1]) in (2, 4, 6):
            palette_name = "Paired"
        else:
            # use 'Set3', a quantitative palette, if there are two grouping
            # factors, or a palette diverging from Red to Purple otherwise:
            palette_name = "Paired" if len(self._groupby) == 2 else "RdPu"
        return sns.color_palette(palette_name)
optimiz.py 文件源码 项目:Chalutier 作者: LaBaleineFr 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def optimiz(currencies, debug):
    currencies = sorted(currencies)
    if len(currencies) < 2 or len(currencies) > 10:
        return {"error": "2 to 10 currencies"}
    max_workers = 4 if sys.version_info[1] < 5 else None
    executor = ThreadPoolExecutor(max_workers)
    data = dict(future.result() for future in wait([executor.submit(get_ochl, cur) for cur in currencies]).done)
    data = [data[cur] for cur in currencies]
    errors = [x['error'] for x in data if 'error' in x]
    if errors:
        return {"error": "Currencies not found : " + str(errors)}
    weights, m, s, a, b = markowitz_optimization(data, debug)
    if debug:
        import matplotlib as mpl
        mpl.use('Agg')
        import matplotlib.pyplot as plt
        fig, ax = plt.subplots()
        plt.plot(s, m, 'o', markersize=1)
        plt.plot(b, a, 'or')
        fig.savefig("chalu.png")
    result = dict()
    for i, cur in enumerate(currencies):
        result[cur] = weights[i]
    return {"result": result}
speech_eval.py 文件源码 项目:lorelei-speech-evaluation 作者: usc-sail 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def frame_similarity(frame1,frame2):
    similarity = 1
    if 'Type' in frame1:
        if frame1['Type'] != frame2['Type']:
            similarity = 0.0
    if similarity == 1:
        if 'PlaceMention' in frame1:
            # if PlaceMention is normalized use simple string comparison
            if not Levenshtein_arg:
                if frame1['PlaceMention']  != frame2['PlaceMention']:
                    similarity = 0.0
            else:
                # PlaceMention is not normalized so use Levinshtein distance
                similarity = Levenshtein.ratio(frame1['PlaceMention'], frame2['PlaceMention'])
    #print("similarity: ", similarity)
    return similarity


# evaluate at the document level -----------------------------------------------
ipython_directive.py 文件源码 项目:terra 作者: UW-Hydro 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def ensure_pyplot(self):
        """
        Ensures that pyplot has been imported into the embedded IPython shell.

        Also, makes sure to set the backend appropriately if not set already.

        """
        # We are here if the @figure pseudo decorator was used. Thus, it's
        # possible that we could be here even if python_mplbackend were set to
        # `None`. That's also strange and perhaps worthy of raising an
        # exception, but for now, we just set the backend to 'agg'.

        if not self._pyplot_imported:
            if 'matplotlib.backends' not in sys.modules:
                # Then ipython_matplotlib was set to None but there was a
                # call to the @figure decorator (and ipython_execlines did
                # not set a backend).
                #raise Exception("No backend was set, but @figure was used!")
                import matplotlib
                matplotlib.use('agg')

            # Always import pyplot into embedded shell.
            self.process_input_line('import matplotlib.pyplot as plt',
                                    store_history=False)
            self._pyplot_imported = True
test_yl.py 文件源码 项目:Automatic_Group_Photography_Enhancement 作者: Yuliang-Zou 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def parse_args():
    """Parse input arguments."""
    parser = argparse.ArgumentParser(description='Faster R-CNN demo')
    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
                        default=0, type=int)
    parser.add_argument('--cpu', dest='cpu_mode',
                        help='Use CPU mode (overrides --gpu)',
                        action='store_true')
    parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16]',
                        default='VGGnet_test')
    parser.add_argument('--model', dest='model', help='Model path',
                        default=' ')
    parser.add_argument('--imdb', dest='imdb', default='voc_2007_test')

    args = parser.parse_args()

    return args
ipython_directive.py 文件源码 项目:leetcode 作者: thomasyimgit 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def ensure_pyplot(self):
        """
        Ensures that pyplot has been imported into the embedded IPython shell.

        Also, makes sure to set the backend appropriately if not set already.

        """
        # We are here if the @figure pseudo decorator was used. Thus, it's
        # possible that we could be here even if python_mplbackend were set to
        # `None`. That's also strange and perhaps worthy of raising an
        # exception, but for now, we just set the backend to 'agg'.

        if not self._pyplot_imported:
            if 'matplotlib.backends' not in sys.modules:
                # Then ipython_matplotlib was set to None but there was a
                # call to the @figure decorator (and ipython_execlines did
                # not set a backend).
                #raise Exception("No backend was set, but @figure was used!")
                import matplotlib
                matplotlib.use('agg')

            # Always import pyplot into embedded shell.
            self.process_input_line('import matplotlib.pyplot as plt',
                                    store_history=False)
            self._pyplot_imported = True
utils.py 文件源码 项目:sockeye 作者: awslabs 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plot_attention(attention_matrix: np.ndarray, source_tokens: List[str], target_tokens: List[str], filename: str):
    """
    Uses matplotlib for creating a visualization of the attention matrix.

    :param attention_matrix: The attention matrix.
    :param source_tokens: A list of source tokens.
    :param target_tokens: A list of target tokens.
    :param filename: The file to which the attention visualization will be written to.
    """
    import matplotlib
    matplotlib.use("Agg")
    import matplotlib.pyplot as plt
    assert attention_matrix.shape[0] == len(target_tokens)

    plt.imshow(attention_matrix.transpose(), interpolation="nearest", cmap="Greys")
    plt.xlabel("target")
    plt.ylabel("source")
    plt.gca().set_xticks([i for i in range(0, len(target_tokens))])
    plt.gca().set_yticks([i for i in range(0, len(source_tokens))])
    plt.gca().set_xticklabels(target_tokens, rotation='vertical')
    plt.gca().set_yticklabels(source_tokens)
    plt.tight_layout()
    plt.savefig(filename)
    logger.info("Saved alignment visualization to " + filename)
gen_rst.py 文件源码 项目:multi-diffusion 作者: chemical-diffusion 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def extract_thumbnail_number(text):
    """ Pull out the thumbnail image number specified in the docstring. """

    # check whether the user has specified a specific thumbnail image
    pattr = re.compile(
        r"^\s*#\s*sphinx_gallery_thumbnail_number\s*=\s*([0-9]+)\s*$",
        flags=re.MULTILINE)
    match = pattr.search(text)

    if match is None:
        # by default, use the first figure created
        thumbnail_number = 1
    else:
        thumbnail_number = int(match.groups()[0])

    return thumbnail_number
variational_autoencoder_deconv_mgpu.py 文件源码 项目:keras_experiments 作者: avolkov1 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def parser_(desc):
    parser = ap.ArgumentParser(description=desc)

    parser.add_argument(
        '--mgpu', action='store', nargs='?', type=int,
        const=-1,  # if mgpu is specified but value not provided then -1
        # if mgpu is not specified then defaults to 0 - single gpu
        # mgpu = 0 if getattr(args, 'mgpu', None) is None else args.mgpu
        default=ap.SUPPRESS,
        help='Run on multiple-GPUs using all available GPUs on a system.\n'
        'If not passed does not use multiple GPU. If passed uses all GPUs.\n'
        'Optionally specify a number to use that many GPUs. Another\n'
        'approach is to specify CUDA_VISIBLE_DEVICES=0,1,... when calling\n'
        'script and specify --mgpu to use this specified device list.\n'
        'This option is only supported with TensorFlow backend.\n')

    parser.add_argument('--epochs', type=int, default=5,
                        help='Number of epochs to run training for.')

    args = parser.parse_args()

    return args
transfer_functions.py 文件源码 项目:yt 作者: yt-project 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def plot(self, filename):
        r"""Save an image file of the transfer function.

        This function loads up matplotlib, plots the transfer function and saves.

        Parameters
        ----------
        filename : string
            The file to save out the plot as.

        Examples
        --------

        >>> tf = TransferFunction( (-10.0, -5.0) )
        >>> tf.add_gaussian(-9.0, 0.01, 1.0)
        >>> tf.plot("sample.png")
        """
        import matplotlib
        matplotlib.use("Agg")
        import pylab
        pylab.clf()
        pylab.plot(self.x, self.y, 'xk-')
        pylab.xlim(*self.x_bounds)
        pylab.ylim(0.0, 1.0)
        pylab.savefig(filename)
Pairwise_offset_algorithm.py 文件源码 项目:dxf2gcode 作者: cnc-club 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get_nearest_point(self, points):
        """ 
        If there are more then 1 intersection points then use the nearest one to
        be the intersection Point.
        @param points: A list of points to be checked for nearest
        @return: Returns the nearest Point
        """
        if len(points) == 1:
            Point = points[0]
        else:
            mindis = points[0].distance(self)
            Point = points[0]
            for i in range(1, len(points)):
                curdis = points[i].distance(self)
                if curdis < mindis:
                    mindis = curdis
                    Point = points[i]

        return Point
viz.py 文件源码 项目:autoreject 作者: autoreject 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _prepare_projectors(params):
    """ Helper for setting up the projectors for epochs browser """
    import matplotlib.pyplot as plt
    import matplotlib as mpl
    epochs = params['epochs']
    projs = params['projs']
    if len(projs) > 0 and not epochs.proj:
        ax_button = plt.subplot2grid((10, 15), (9, 14))
        opt_button = mpl.widgets.Button(ax_button, 'Proj')
        callback_option = partial(_toggle_options, params=params)
        opt_button.on_clicked(callback_option)
        params['opt_button'] = opt_button
        params['ax_button'] = ax_button

    # As here code is shared with plot_evoked, some extra steps:
    # first the actual plot update function
    params['plot_update_proj_callback'] = _plot_update_epochs_proj
    # then the toggle handler
    callback_proj = partial(_toggle_proj, params=params)
    # store these for use by callbacks in the options figure
    params['callback_proj'] = callback_proj
    callback_proj('none')


问题


面经


文章

微信
公众号

扫码关注公众号