def get_QT_interval(self, fig, ax, ax1, ax2, line2, qt_average_waveform, qt_all_spikes):
"""
This function allows the user to select the QT interval for a region of data.
input:
fig(plt.fig)
ax, ax1, ax2(plt.fig.subplot)
line2(plt.fig.subplot.plot([float]))
qt_average_waveform([float])
qt_all_spikes([MCS_Spike])
"""
ax.set_title(self.title)
ax.plot(qt_average_waveform)
for spike in qt_all_spikes:
ax1.plot(spike.voltage_data)
span = SpanSelector(ax, self.onselect, 'horizontal', useblit=True,
rectprops=dict(alpha=0.5, facecolor='red'))
plt.show(block=False)
a = raw_input("Press any key... ")
qt_start_point = self.indmin
qt_end_point = self.indmax
return qt_start_point, qt_end_point
python类SpanSelector()的实例源码
def get_CV_region(self, fig, ax, ax_stim, ax1, ax2, line1, line2, channel_data_1, channel_data_2, stim_data):
"""
This function allows the user to select a region for the
"""
ax.set_title(self.title)
ax.plot(channel_data_1)
ax.plot(channel_data_2)
ax_stim.plot(stim_data)
span = SpanSelector(ax, self.onselect, 'horizontal', useblit=True,
rectprops=dict(alpha=0.5, facecolor='red'))
plt.show(block=False)
a = raw_input("Press any key... ")
start_time = self.channels_to_compare[0].time_data[self.indmin]
end_time = self.channels_to_compare[0].time_data[self.indmax]
return start_time, end_time
def plot(self):
# Prepare the data
data = self.locs[self.field]
data = data[np.isfinite(data)]
bins = lib.calculate_optimal_bins(data, 1000)
# Prepare the figure
self.figure.clear()
self.figure.suptitle(self.field)
axes = self.figure.add_subplot(111)
axes.hist(data, bins, rwidth=1, linewidth=0)
data_range = data.ptp()
axes.set_xlim([bins[0] - 0.05*data_range, data.max() + 0.05*data_range])
self.span = SpanSelector(axes, self.on_span_select, 'horizontal', useblit=True, rectprops=dict(facecolor='green', alpha=0.2))
self.canvas.draw()
def plot_all_chan_spectrum(spectrum, bins, *, ax=None, **kwargs):
def integrate_to_angles(spectrum, bins, lo, hi):
lo_ind, hi_ind = bins.searchsorted([lo, hi])
return spectrum[lo_ind:hi_ind].sum(axis=0)
if ax is None:
fig, ax = plt.subplots(figsize=(13.5, 9.5))
else:
fig = ax.figure
div = make_axes_locatable(ax)
ax_r = div.append_axes('right', 2, pad=0.1, sharey=ax)
ax_t = div.append_axes('top', 2, pad=0.1, sharex=ax)
ax_r.yaxis.tick_right()
ax_r.yaxis.set_label_position("right")
ax_t.xaxis.tick_top()
ax_t.xaxis.set_label_position("top")
im = ax.imshow(spectrum, origin='lower', aspect='auto',
extent=(-.5, 383.5,
bins[0], bins[-1]),
norm=LogNorm())
e_line, = ax_r.plot(spectrum.sum(axis=1), bins[:-1] + np.diff(bins))
p_line, = ax_t.plot(spectrum.sum(axis=0))
label = ax_t.annotate('[0, 70] kEv', (0, 1), (10, -10),
xycoords='axes fraction',
textcoords='offset pixels',
va='top', ha='left')
def update(lo, hi):
p_data = integrate_to_angles(spectrum, bins, lo, hi)
p_line.set_ydata(p_data)
ax_t.relim()
ax_t.autoscale(axis='y')
label.set_text(f'[{lo:.1f}, {hi:.1f}] keV')
fig.canvas.draw_idle()
span = SpanSelector(ax_r, update, 'vertical', useblit=True,
rectprops={'alpha': .5, 'facecolor': 'red'},
span_stays=True)
ax.set_xlabel('channel [#]')
ax.set_ylabel('E [keV]')
ax_t.set_xlabel('channel [#]')
ax_t.set_ylabel('total counts')
ax_r.set_ylabel('E [keV]')
ax_r.set_xlabel('total counts')
ax.set_xlim(-.5, 383.5)
ax.set_ylim(bins[0], bins[-1])
ax_r.set_xlim(xmin=0)
return spectrum, bins, {'center': {'ax': ax, 'im': im},
'top': {'ax': ax_t, 'p_line': p_line},
'right': {'ax': ax_r, 'e_line': e_line,
'span': span}}