python类MaxNLocator()的实例源码

__init__.py 文件源码 项目:matplotlib-hep 作者: ibab 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def make_split(ratio, gap=0.12):
    import matplotlib.pyplot as plt
    from matplotlib.gridspec import GridSpec
    from matplotlib.ticker import MaxNLocator
    cax = plt.gca()
    box = cax.get_position()
    xmin, ymin = box.xmin, box.ymin
    xmax, ymax = box.xmax, box.ymax
    gs = GridSpec(2, 1, height_ratios=[ratio, 1 - ratio], left=xmin, right=xmax, bottom=ymin, top=ymax)
    gs.update(hspace=gap)

    ax = plt.subplot(gs[0])
    plt.setp(ax.get_xticklabels(), visible=False)
    bx = plt.subplot(gs[1], sharex=ax)

    return ax, bx
__init__.py 文件源码 项目:prince 作者: MaxHalford 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def inertia(self, explained_inertia):
        fig, ax = plt.subplots()

        ax.grid('on')
        ax.xaxis.set_ticks_position('none')
        ax.yaxis.set_ticks_position('none')

        ax.plot(explained_inertia, color=SEABORN['blue'], label='Normalized inertia')
        ax.plot(explained_inertia, 'o', color=SEABORN['cyan'])

        ax.xaxis.set_major_locator(ticker.MaxNLocator(integer=True))

        ax.margins(0.05)
        ax.set_ylim(ymax=1)

        ax.set_title('Component contributions to inertia')
        ax.set_xlabel('Component number')
        ax.set_ylabel('Normalized inertia')
        ax.legend(loc='best')

        return fig, ax
plotter.py 文件源码 项目:ChainConsumer 作者: Samreay 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _plot_walk(self, ax, parameter, data, truth=None, extents=None,
                   convolve=None, color=None):  # pragma: no cover
        if extents is not None:
            ax.set_ylim(extents)
        assert convolve is None or isinstance(convolve, int), \
            "Convolve must be an integer pixel window width"
        x = np.arange(data.size)
        ax.set_xlim(0, x[-1])
        ax.set_ylabel(parameter)
        if color is None:
            color = "#0345A1"
        ax.scatter(x, data, c=color, s=2, marker=".", edgecolors="none", alpha=0.5)
        max_ticks = self.parent.config["max_ticks"]
        ax.yaxis.set_major_locator(MaxNLocator(max_ticks, prune="lower"))

        if convolve is not None:
            color2 = self.parent.color_finder.scale_colour(color, 0.5)
            filt = np.ones(convolve) / convolve
            filtered = np.convolve(data, filt, mode="same")
            ax.plot(x[:-1], filtered[:-1], ls=':', color=color2, alpha=1)
        if truth is not None:
            ax.axhline(truth, **self.parent.config_truth)
plot.py 文件源码 项目:mimclib 作者: StochasticNumerics 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def plotKurtosisVsLvls(ax, runs, *args, **kwargs):
    """Plots El, Vl vs TOL of @runs, as
    returned by MIMCDatabase.readRunData()
    ax is in instance of matplotlib.axes
    """
    args, kwargs = __normalize_fmt(args, kwargs)
    ax.set_xlabel(r'$\ell$')
    ax.set_ylabel(r'$\textnormal{Kurt}_\ell$')
    ax.set_yscale('log')
    fnNorm = kwargs.pop("fnNorm")
    if "__calc_moments" in kwargs:
        central_delta_moments, _,  _, _, _ = kwargs.pop("__calc_moments")
    else:
        central_delta_moments, _, _, _, _ = __calc_moments(runs,
                                                        seed=kwargs.pop('seed', None),
                                                        direction=kwargs.pop('direction',
                                                                             None),
                                                           fnNorm=fnNorm)
    Vl = central_delta_moments[:, 1]
    E4l = central_delta_moments[:, 3]
    ax.xaxis.set_major_locator(MaxNLocator(integer=True))
    line = ax.plot(np.arange(0, len(Vl)), E4l/Vl**2, *args, **kwargs)
    return line[0].get_xydata(), [line]
plot.py 文件源码 项目:mimclib 作者: StochasticNumerics 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plotSkewnessVsLvls(ax, runs, *args, **kwargs):
    """Plots El, Vl vs TOL of @runs, as
    returned by MIMCDatabase.readRunData()
    ax is in instance of matplotlib.axes
    """
    args, kwargs = __normalize_fmt(args, kwargs)
    ax.set_xlabel(r'$\ell$')
    ax.set_ylabel(r'$\textnormal{Skew}_\ell$')
    ax.set_yscale('log')
    fnNorm = kwargs.pop("fnNorm")
    if "__calc_moments" in kwargs:
        central_delta_moments, _, _, _, _ = kwargs.pop("__calc_moments")
    else:
        central_delta_moments, _, _, _, _ = __calc_moments(runs,
                                                           seed=kwargs.pop('seed', None),
                                                           direction=kwargs.pop('direction',
                                                                                None),
                                                           fnNorm=fnNorm)
    Vl = central_delta_moments[:, 1]
    E3l = np.abs(central_delta_moments[:, 2])
    ax.xaxis.set_major_locator(MaxNLocator(integer=True))
    line = ax.plot(np.arange(0, len(Vl)), E3l/Vl**1.5, *args, **kwargs)
    return line[0].get_xydata(), [line]
tools.py 文件源码 项目:WaveletQuotes 作者: JobyKK 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def showResult(date, scales, power, time_scale, window, file_name):
    # y_ticks = np.arange(0, 15, 2)
    import matplotlib.ticker as mticker
    import matplotlib.dates as mdates
    fig, ax = plt.subplots()
    ax.xaxis.set_major_locator(YearLocator(time_scale))
    # ax.set_yticks(y_ticks)
    ax.xaxis.set_major_locator(mticker.MaxNLocator(5))
    ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))

    ax.contourf(date, scales, power, 100)
    # ax.set_yscale('log')
    print("Wavelet saved to", file_name)
    fig.savefig(file_name)
    # fig.show()
    # fig.waitforbuttonpress()
plot_util.py 文件源码 项目:lotss-catalogue 作者: mhardcastle 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def paper_single_mult_ax(nrows=1, ncols=1, **kwargs):
    #import matplotlib as mpl
    paper_single(FF=max(nrows,ncols))
    f, ax = plt.subplots(nrows=nrows, ncols=ncols, **kwargs)
    plt.minorticks_on()
    ylocator6 = plt.MaxNLocator(5)
    xlocator6 = plt.MaxNLocator(6)
    if len(ax.shape) > 1:
        for axrow in ax:
            for axcol in axrow:
                axcol.xaxis.set_major_locator(xlocator6)
                axcol.yaxis.set_major_locator(ylocator6)
    else:
        for axcol in ax:
            axcol.xaxis.set_major_locator(xlocator6)
            axcol.yaxis.set_major_locator(ylocator6)
    return f, ax
invResults.py 文件源码 项目:BISIP 作者: clberube 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def plot_deviance(sol, save=False, draw=True, save_as_png=True, fig_dpi=144):
    if save_as_png:
        save_as = 'png'
    else:
        save_as = 'pdf'
    filename = sol.filename.replace("\\", "/").split("/")[-1].split(".")[0]
    model = get_model_type(sol)
    if draw or save:
        fig, ax = plt.subplots(figsize=(4,3))
        deviance = sol.MDL.trace('deviance')[:]
        sampler_state = sol.MDL.get_state()["sampler"]
        x = np.arange(sampler_state["_burn"]+1, sampler_state["_iter"]+1, sampler_state["_thin"])
        plt.plot(x, deviance, "-", color="C3", label="Model deviance\nDIC = %.2f\nBPIC = %.2f" %(sol.MDL.DIC,sol.MDL.BPIC))
        plt.xlabel("Iteration")
        plt.ylabel("Model deviance")
        plt.legend(numpoints=1, loc="best", fontsize=9)
        plt.grid('on')
        if sampler_state["_burn"] == 0:
            plt.xscale('log')
        else:
            plt.ticklabel_format(style='sci', axis='x', scilimits=(0,0))
        ax.yaxis.set_major_locator(MaxNLocator(integer=True))
        fig.tight_layout()
    if save:
        save_where = '/Figures/ModelDeviance/'
        working_path = getcwd().replace("\\", "/")+"/"
        save_path = working_path+save_where
        print("\nSaving model deviance figure in:\n", save_path)
        if not path.exists(save_path):
            makedirs(save_path)
        fig.savefig(save_path+'ModelDeviance-%s-%s.%s'%(model,filename,save_as), dpi=fig_dpi, bbox_inches='tight')
    try:    plt.close(fig)
    except: pass
    if draw:    return fig
    else:       return None
invResults.py 文件源码 项目:BISIP 作者: clberube 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def plot_logp(sol, save=False, draw=True, save_as_png=True, fig_dpi=144):
    if save_as_png:
        save_as = 'png'
    else:
        save_as = 'pdf'
    filename = sol.filename.replace("\\", "/").split("/")[-1].split(".")[0]
    model = get_model_type(sol)
    if draw or save:
        fig, ax = plt.subplots(figsize=(4,3))
        logp = logp_trace(sol.MDL)
        sampler_state = sol.MDL.get_state()["sampler"]
        x = np.arange(sampler_state["_burn"]+1, sampler_state["_iter"]+1, sampler_state["_thin"])
        plt.plot(x, logp, "-", color="C3")
        plt.xlabel("Iteration")
        plt.ylabel("Log-likelihood")
        plt.legend(numpoints=1, loc="best", fontsize=9)
        plt.grid('on')
        if sampler_state["_burn"] == 0:
            plt.xscale('log')
        else:
            plt.ticklabel_format(style='sci', axis='x', scilimits=(0,0))
        ax.yaxis.set_major_locator(MaxNLocator(integer=True))
        fig.tight_layout()
    if save:
        save_where = '/Figures/LogLikelihood/'
        working_path = getcwd().replace("\\", "/")+"/"
        save_path = working_path+save_where
        print("\nSaving logp trace figure in:\n", save_path)
        if not path.exists(save_path):
            makedirs(save_path)
        fig.savefig(save_path+'LogLikelihood-%s-%s.%s'%(model,filename,save_as), dpi=fig_dpi, bbox_inches='tight')
    try:    plt.close(fig)
    except: pass
    if draw:    return fig
    else:       return None
invResults.py 文件源码 项目:BISIP 作者: clberube 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plot_deviance(sol, save=False, draw=True, save_as_png=True, fig_dpi=144):
    if save_as_png:
        save_as = 'png'
    else:
        save_as = 'pdf'
    filename = sol.filename.replace("\\", "/").split("/")[-1].split(".")[0]
    model = get_model_type(sol)
    if draw or save:
        fig, ax = plt.subplots(figsize=(4,3))
        deviance = sol.MDL.trace('deviance')[:]
        sampler_state = sol.MDL.get_state()["sampler"]
        x = np.arange(sampler_state["_burn"]+1, sampler_state["_iter"]+1, sampler_state["_thin"])
        plt.plot(x, deviance, "-", color="C3", label="Model deviance\nDIC = %.2f\nBPIC = %.2f" %(sol.MDL.DIC,sol.MDL.BPIC))
        plt.xlabel("Iteration")
        plt.ylabel("Model deviance")
        plt.legend(numpoints=1, loc="best")
        plt.grid('on')
        if sampler_state["_burn"] == 0:
            plt.xscale('log')
        else:
            plt.ticklabel_format(style='sci', axis='x', scilimits=(0,0))
        ax.yaxis.set_major_locator(MaxNLocator(integer=True))
        fig.tight_layout()
    if save:
        save_where = '/Figures/ModelDeviance/'
        working_path = getcwd().replace("\\", "/")+"/"
        save_path = working_path+save_where
        print("\nSaving model deviance figure in:\n", save_path)
        if not path.exists(save_path):
            makedirs(save_path)
        fig.savefig(save_path+'ModelDeviance-%s-%s.%s'%(model,filename,save_as), dpi=fig_dpi, bbox_inches='tight')
    try:    plt.close(fig)
    except: pass
    if draw:    return fig
    else:       return None
invResults.py 文件源码 项目:BISIP 作者: clberube 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def plot_logp(sol, save=False, draw=True, save_as_png=True, fig_dpi=144):
    if save_as_png:
        save_as = 'png'
    else:
        save_as = 'pdf'
    filename = sol.filename.replace("\\", "/").split("/")[-1].split(".")[0]
    model = get_model_type(sol)
    if draw or save:
        fig, ax = plt.subplots(figsize=(4,3))
        logp = logp_trace(sol.MDL)
        sampler_state = sol.MDL.get_state()["sampler"]
        x = np.arange(sampler_state["_burn"]+1, sampler_state["_iter"]+1, sampler_state["_thin"])
        plt.plot(x, logp, "-", color="C3")
        plt.xlabel("Iteration")
        plt.ylabel("Log-likelihood")
        plt.legend(numpoints=1, loc="best")
        plt.grid('on')
        if sampler_state["_burn"] == 0:
            plt.xscale('log')
        else:
            plt.ticklabel_format(style='sci', axis='x', scilimits=(0,0))
        ax.yaxis.set_major_locator(MaxNLocator(integer=True))
        fig.tight_layout()
    if save:
        save_where = '/Figures/LogLikelihood/'
        working_path = getcwd().replace("\\", "/")+"/"
        save_path = working_path+save_where
        print("\nSaving logp trace figure in:\n", save_path)
        if not path.exists(save_path):
            makedirs(save_path)
        fig.savefig(save_path+'LogLikelihood-%s-%s.%s'%(model,filename,save_as), dpi=fig_dpi, bbox_inches='tight')
    try:    plt.close(fig)
    except: pass
    if draw:    return fig
    else:       return None
visualize.py 文件源码 项目:KATE 作者: hugochan 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def heatmap(data, save_file='heatmap.png'):
    ax = plt.figure().gca()
    ax.yaxis.set_major_locator(MaxNLocator(integer=True))
    ax.yaxis.set_major_locator(MultipleLocator(5))
    plt.pcolor(data, cmap=plt.cm.jet)
    plt.savefig(save_file)
    # plt.show()
__init__.py 文件源码 项目:matplotlib-hep 作者: ibab 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plot_pull(data, func):

    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.ticker import MaxNLocator

    ax, bx = make_split(0.8)

    plt.sca(ax)

    x, y, norm = histpoints(data)

    lower, upper = ax.get_xlim()

    xs = np.linspace(lower, upper, 200)
    plt.plot(xs, norm * func(xs), 'b-')

    #plt.gca().yaxis.set_major_locator(MaxNLocator(prune='lower'))

    plt.sca(bx)

    resid = y[1] - norm * func(x)
    err = np.zeros_like(resid)
    err[resid >= 0] = y[0][resid >= 0]
    err[resid < 0] = y[2][resid < 0]

    pull = resid / err

    plt.errorbar(x, pull, yerr=1, color='k', fmt='o')
    plt.ylim(-5, 5)
    plt.axhline(0, color='b')

    plt.sca(ax)

    return ax, bx
activity.py 文件源码 项目:memes-reposter 作者: vaniakosmos 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def visualise(self, marks, counts):
        N = len(marks)
        ind = range(N)

        _, ax = plt.subplots()
        ax.bar(ind, counts, color='#4286f4')

        ax.set_ylabel('Posts')
        ax.set_xticks(ind)
        ax.yaxis.set_major_locator(MaxNLocator(nbins=20, integer=True, min_n_ticks=1))
        step = N // 12 + 1
        labels = [self.format_time(mark) if i % step == 0 else '' for i, mark in enumerate(marks)]
        ax.set_xticklabels(labels, rotation=45, fontsize=10)

        return self.save()
__init__.py 文件源码 项目:prince 作者: MaxHalford 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def cumulative_inertia(self, cumulative_explained_inertia, threshold):
        fig, ax = plt.subplots()

        ax.grid('on')
        ax.xaxis.set_ticks_position('none')
        ax.yaxis.set_ticks_position('none')

        # Plot threshold line
        ax.axhline(y=threshold, color=SEABORN['red'], label='Threshold',
                   linestyle='--')

        # Plot first value above threshold line
        try:
            index_above_threshold = [
                i >= threshold
                for i in cumulative_explained_inertia
            ].index(True)
            ax.axvline(x=index_above_threshold, color=SEABORN['green'],
                       label='First component above threshold',
                       linestyle='--')
        except ValueError:
            pass

        # Plot inertia percentages curve
        ax.plot(cumulative_explained_inertia, color=SEABORN['blue'],
                label='Normalized cumulative inertia')
        ax.plot(cumulative_explained_inertia, 'o', color=SEABORN['blue'])

        ax.xaxis.set_major_locator(ticker.MaxNLocator(integer=True))

        ax.margins(0.05, 0.15)
        ax.set_ylim(ymin=0)

        ax.set_title('Cumulative component contributions to inertia')
        ax.set_xlabel('Component number')
        ax.set_ylabel('Normalized cumulative inertia')
        ax.legend(loc='best')

        return fig, ax
test_server_bundle.py 文件源码 项目:catalyst 作者: enigmampc 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plot_ohlcv(self, df):

        fig, ax = plt.subplots()

        # Plot the candlestick
        candlestick2_ohlc(ax, df['open'], df['high'], df['low'], df['close'],
                          width=1, colorup='g', colordown='r', alpha=0.5)

        # shift y-limits of the candlestick plot so that there is space
        # at the bottom for the volume bar chart
        pad = 0.25
        yl = ax.get_ylim()
        ax.set_ylim(yl[0] - (yl[1] - yl[0]) * pad, yl[1])

        # Add a seconds axis for the volume overlay
        ax2 = ax.twinx()

        ax2.set_position(
            matplotlib.transforms.Bbox([[0.125, 0.1], [0.9, 0.26]]))

        # Plot the volume overlay
        # bc = volume_overlay(ax2, df['open'], df['close'], df['volume'],
        #                     colorup='g', alpha=0.5, width=1)

        ax.xaxis.set_major_locator(ticker.MaxNLocator(6))

        def mydate(x, pos):
            try:
                return df.index[int(x)]
            except IndexError:
                return ''

        ax.xaxis.set_major_formatter(ticker.FuncFormatter(mydate))
        plt.margins(0)
        plt.show()
__init__.py 文件源码 项目:nc-time-axis 作者: SciTools 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, max_n_ticks, calendar, date_unit, min_n_ticks=3):
        # The date unit must be in the form of days since ...

        self.max_n_ticks = max_n_ticks
        self.min_n_ticks = min_n_ticks
        self._max_n_locator = mticker.MaxNLocator(max_n_ticks, integer=True)
        self._max_n_locator_days = mticker.MaxNLocator(
            max_n_ticks, integer=True, steps=[1, 2, 4, 7, 14])
        self.calendar = calendar
        self.date_unit = date_unit
        if not self.date_unit.lower().startswith('days since'):
            msg = 'The date unit must be days since for a NetCDF time locator.'
            raise ValueError(msg)

        self._cached_resolution = {}
SPY.py 文件源码 项目:Stock-Analysis 作者: Vaibhav 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, *args, **kwargs):
        mticker.MaxNLocator.__init__(self, *args, **kwargs)
SPY.py 文件源码 项目:Stock-Analysis 作者: Vaibhav 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __call__(self, *args, **kwargs):
        return mticker.MaxNLocator.__call__(self, *args, **kwargs)

# at most 5 ticks, pruning the upper and lower so they don't overlap
# with other ticks
#ax2.yaxis.set_major_locator(mticker.MaxNLocator(5, prune='both'))
#ax3.yaxis.set_major_locator(mticker.MaxNLocator(5, prune='both'))
correlation.py 文件源码 项目:Stock-SentimentAnalysis 作者: JoshuaMichaelKing 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plot_index_and_sentiment(tick_seq, shindex_seq, sentiment_seq, date):
    if len(tick_seq) != len(shindex_seq) or len(tick_seq) != len(sentiment_seq):
        print('error(plot) : three sequence length is not same')
        return

    x = range(len(shindex_seq))
    labels = tick_seq
    y1 = shindex_seq
    y2 = sentiment_seq

    def format_fn(tick_val, tick_pos):
        if int(tick_val) in x:
            return labels[int(tick_val)]
        else:
            return ''

    fig = plt.figure(figsize=(12,8))
    p1 = fig.add_subplot(111)
    p1.xaxis.set_major_formatter(FuncFormatter(format_fn))
    p1.xaxis.set_major_locator(MaxNLocator(integer=True, nbins=12))
    delta = shindex_seq[len(shindex_seq) - 1] - shindex_seq[0]
    if delta > 0:
        p1.plot(x, y1, label="$SCI$", color="red", linewidth=1)
    else:
        p1.plot(x, y1, label="$SCI$", color="green", linewidth=1)
    p1.plot(x, y2, 'b--', label="$ISI$", color="blue", linewidth=1)

    plt.title("Shanghai Composite Index(SCI) & Investor Sentiment Index(ISI)")
    plt.xlabel("Time(5min)")
    plt.ylabel("Index Value")
    plt.legend()
    # plt.show()
    global subdir
    filepath = './Pic/' + subdir + '/' + date + '.png'
    plt.savefig(filepath)
plottool.py 文件源码 项目:pyktrader2 作者: harveywwu 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, *args, **kwargs):
        mticker.MaxNLocator.__init__(self, *args, **kwargs)
plottool.py 文件源码 项目:pyktrader2 作者: harveywwu 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __call__(self, *args, **kwargs):
        return mticker.MaxNLocator.__call__(self, *args, **kwargs)
widgets.py 文件源码 项目:quantdigger 作者: andyzsf 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, *args, **kwargs):
        mticker.MaxNLocator.__init__(self, *args, **kwargs)
widgets.py 文件源码 项目:quantdigger 作者: andyzsf 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __call__(self, *args, **kwargs):
        return mticker.MaxNLocator.__call__(self, *args, **kwargs)

#plt.rc('axes', grid=True)
cifar10_custom_dataset_gap.py 文件源码 项目:pytorch_60min_blitz 作者: kyuhyoung 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def main():

    dir_data = './data'
    ext_img = 'png'
    #n_epoch = 100
    n_epoch = 50
    #n_img_per_batch = 40
    n_img_per_batch = 60
    #n_img_per_batch = 1
    n_worker = 4
    interval_train_loss = int(round(20000 / n_img_per_batch)) * n_img_per_batch
    is_gpu = torch.cuda.device_count() > 0

    transform = transforms.Compose(
        [transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

    di_set_transform = {'train' : transform, 'test' : transform}

    #fig = plt.figure(num=None, figsize=(1, 2), dpi=500)
    fig = plt.figure(num=None, figsize=(12, 18), dpi=100)
    plt.ion()
    ax_loss_train = fig.add_subplot(2, 1, 1)
    ax_loss_train.set_title('Avg. train loss per image vs. # train input images')
    ax_loss_train.xaxis.set_major_locator(MaxNLocator(integer=True))
    ax_loss_val = fig.add_subplot(2, 1, 2)
    ax_loss_val.set_title('Avg. val. loss per image vs. # train input images')
    ax_loss_val.xaxis.set_major_locator(MaxNLocator(integer=True))
    trainloader, testloader, net, criterion, optimizer, scheduler, li_class = \
        initialize(
            is_gpu, dir_data, di_set_transform, ext_img, n_img_per_batch, n_worker)
    #print('[%s] lap of initializing : %d sec' % (lap_sec))
    kolor = np.random.rand(3)
    #if 2 == i_m:
    #    a = 0
    train(is_gpu, trainloader, testloader, net, criterion, optimizer, scheduler, #li_class,
          n_epoch, ax_loss_train, ax_loss_val,
          kolor, interval_train_loss)
    print('Finished all.')
    plt.pause(1000)
    return
colorbar.py 文件源码 项目:marvin 作者: sdss 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _set_cbticks(cbrange, cb_kws):
    """Set colorbar ticks.

    Adjust colorbar range if using a discrete colorbar so that the ticks fall
        in the middle of each level.

    Parameters:
        cbrange (list):
            Colorbar range.
        cb_kws (dict):
            Keyword args to set and draw colorbar.

    Return:
        tuple: colorbar range, colorbar tick numbers
    """
    if cb_kws.get('log_cb'):
        ticks = _log_cbticks(cbrange)
    else:
        try:
            ticks = MaxNLocator(cb_kws.get('n_ticks', 7)).tick_values(*cbrange)
        except AttributeError:
            print('AttributeError: MaxNLocator instance has no attribute ``tick_values``.')

    # if discrete colorbar, offset upper and lower cbrange so ticks are in center of each level
    if cb_kws.get('n_levels', None) is not None:
        offset = (ticks[1] - ticks[0]) / 2.
        cbrange = [ticks[0] - offset, ticks[-1] + offset]
        if cb_kws.get('tick_everyother', False):
            ticks = ticks[::2]

    return cbrange, ticks
submission_evaluation.py 文件源码 项目:evaluation-toolkit 作者: lightfield-analysis 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def add_colorbar(cm, bins, fontsize=5):
    cb = plt.colorbar(cm, shrink=0.9)
    cb.outline.set_linewidth(0)
    cb.locator = ticker.MaxNLocator(nbins=bins)
    cb.ax.tick_params(labelsize=fontsize)
    cb.update_ticks()
plotting.py 文件源码 项目:evaluation-toolkit 作者: lightfield-analysis 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def create_colorbar(cm, cax, colorbar_bins=8, fontsize=None, linewidth=0):
    cb = plt.colorbar(mappable=cm, cax=cax)

    if fontsize is not None:
        cb.ax.tick_params(labelsize=fontsize)

    cb.outline.set_linewidth(linewidth)
    cb.locator = ticker.MaxNLocator(nbins=colorbar_bins)
    cb.update_ticks()
graph.py 文件源码 项目:rapidpythonprogramming 作者: thecount12 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def graphData(stock):
        stockFile=stock+".txt"

        date,closep,highp,lowp,openp,volume= np.loadtxt(stockFile,delimiter=',',unpack=True,
                        converters={0: mdates.strpdate2num('%Y%m%d')})
        fig=plt.figure()
        ax1=plt.subplot(1,1,1) # how much by how much by 
        ax1.plot(date,openp)
        ax1.plot(date,highp)
        ax1.plot(date,lowp)
        ax1.plot(date,closep)

        #pretty it up
        ax1.xaxis.set_major_locator(mticker.MaxNLocator(10)) #max10days
        ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))

        # rotate
        for label in ax1.xaxis.get_ticklabels():
            label.set_rotation(45)


        plt.show()
plotting.py 文件源码 项目:lens 作者: ASIDataScience 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _set_integer_tick_labels(axis, labels):
    """Use labels dict to set labels on axis"""
    axis.set_major_formatter(FuncFormatter(lambda x, _: labels.get(x, '')))
    axis.set_major_locator(MaxNLocator(integer=True))


问题


面经


文章

微信
公众号

扫码关注公众号