def plot_volcano(logFC,p_val,sample_name,saveName,logFC_thresh):
fig=pl.figure()
## To plot and save
pl.scatter(logFC[(p_val>0.05)|(abs(logFC)<logFC_thresh)],-np.log10(p_val[(p_val>0.05)|(abs(logFC)<logFC_thresh)]),color='blue',alpha=0.5);
pl.scatter(logFC[(p_val<0.05)&(abs(logFC)>logFC_thresh)],-np.log10(p_val[(p_val<0.05)&(abs(logFC)>logFC_thresh)]),color='red');
pl.hlines(-np.log10(0.05),min(logFC),max(logFC))
pl.vlines(-logFC_thresh,min(-np.log10(p_val)),max(-np.log10(p_val)))
pl.vlines(logFC_thresh,min(-np.log10(p_val)),max(-np.log10(p_val)))
pl.xlim(-3,3)
pl.xlabel('Log Fold Change')
pl.ylabel('-log10(p-value)')
pl.savefig(saveName)
pl.close(fig)
# def plot_histograms(df_peaks,pntr_list):
#
# for pntr in pntr_list:
# colName =pntr[2]+'_Intragenic_position'
# pl.hist(df_peaks[colName])
# pl.xlabel(colName)
# pl.ylabel()
# pl.show()
python类hist()的实例源码
def plot_1d(dataset, nbins, data):
with sns.axes_style('white'):
plt.rc('font', weight='bold')
plt.rc('grid', lw=2)
plt.rc('lines', lw=3)
plt.figure(1)
plt.hist(data, bins=np.arange(nbins+1), color='blue')
plt.ylabel('Count', weight='bold', fontsize=24)
xticks = list(plt.gca().get_xticks())
while (nbins-1) / float(xticks[-1]) < 1.1:
xticks = xticks[:-1]
while xticks[0] < 0:
xticks = xticks[1:]
xticks.append(nbins-1)
xticks = list(sorted(xticks))
plt.gca().set_xticks(xticks)
plt.xlim([int(np.ceil(-0.05*nbins)),int(np.ceil(nbins*1.05))])
plt.legend(loc='upper right')
plt.savefig('plots/marginals-{0}.pdf'.format(dataset.replace('_','-')), bbox_inches='tight')
plt.clf()
plt.close()
def plot_1d(dataset, nbins):
data = np.loadtxt('experiments/uci/data/splits/{0}_all.csv'.format(dataset), skiprows=1, delimiter=',')[:,-1]
with sns.axes_style('white'):
plt.rc('font', weight='bold')
plt.rc('grid', lw=2)
plt.rc('lines', lw=3)
plt.figure(1)
plt.hist(data, bins=np.arange(nbins+1), color='blue')
plt.ylabel('Count', weight='bold', fontsize=24)
xticks = list(plt.gca().get_xticks())
while (nbins-1) / float(xticks[-1]) < 1.1:
xticks = xticks[:-1]
while xticks[0] < 0:
xticks = xticks[1:]
xticks.append(nbins-1)
xticks = list(sorted(xticks))
plt.gca().set_xticks(xticks)
plt.xlim([int(np.ceil(-0.05*nbins)),int(np.ceil(nbins*1.05))])
plt.legend(loc='upper right')
plt.savefig('plots/marginals-{0}.pdf'.format(dataset.replace('_','-')), bbox_inches='tight')
plt.clf()
plt.close()
def onehist(x,xlabel='',fontsize=12):
"""
Script that plots the histogram of x with the corresponding xlabel.
"""
pylab.clf()
pylab.rcParams.update({'font.size': fontsize})
pylab.hist(x,histtype='stepfilled')
pylab.legend()
#### Change the X-axis appropriately ####
pylab.xlabel(xlabel)
pylab.ylabel('Number')
pylab.draw()
pylab.show()
def threehistsx(x1,x2,x3,x1leg='$x_1$',x2leg='$x_2$',x3leg='$x_3$',fig=1,fontsize=12,bins1=10,bins2=10,bins3=10):
"""
Script that pretty-plots three histograms of quantities x1, x2 and x3.
Arguments:
:param x1,x2,x3: arrays with data to be plotted
:param x1leg, x2leg, x3leg: legends for each histogram
:param fig: which plot window should I use?
Example:
x1=Lbol(AD), x2=Lbol(JD), x3=Lbol(EHF10)
>>> threehists(x1,x2,x3,38,44,'AD','JD','EHF10','$\log L_{\\rm bol}$ (erg s$^{-1}$)')
Inspired by http://www.scipy.org/Cookbook/Matplotlib/Multiple_Subplots_with_One_Axis_Label.
"""
pylab.rcParams.update({'font.size': fontsize})
pylab.figure(fig)
pylab.clf()
pylab.subplot(3,1,1)
pylab.hist(x1,label=x1leg,color='b',bins=bins1)
pylab.legend(loc='best',frameon=False)
pylab.subplot(3,1,2)
pylab.hist(x2,label=x2leg,color='r',bins=bins2)
pylab.legend(loc='best',frameon=False)
pylab.subplot(3,1,3)
pylab.hist(x3,label=x3leg,color='y',bins=bins3)
pylab.legend(loc='best',frameon=False)
pylab.minorticks_on()
pylab.subplots_adjust(hspace=0.15)
pylab.draw()
pylab.show()
utils.py 文件源码
项目:Building-Machine-Learning-Systems-With-Python-Second-Edition
作者: PacktPublishing
项目源码
文件源码
阅读 20
收藏 0
点赞 0
评论 0
def plot_feat_hist(data_name_list, filename=None):
pylab.clf()
num_rows = 1 + (len(data_name_list) - 1) / 2
num_cols = 1 if len(data_name_list) == 1 else 2
pylab.figure(figsize=(5 * num_cols, 4 * num_rows))
for i in range(num_rows):
for j in range(num_cols):
pylab.subplot(num_rows, num_cols, 1 + i * num_cols + j)
x, name = data_name_list[i * num_cols + j]
pylab.title(name)
pylab.xlabel('Value')
pylab.ylabel('Density')
# the histogram of the data
max_val = np.max(x)
if max_val <= 1.0:
bins = 50
elif max_val > 50:
bins = 50
else:
bins = max_val
n, bins, patches = pylab.hist(
x, bins=bins, normed=1, facecolor='green', alpha=0.75)
pylab.grid(True)
if not filename:
filename = "feat_hist_%s.png" % name
pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight")
utils.py 文件源码
项目:Building-Machine-Learning-Systems-With-Python-Second-Edition
作者: PacktPublishing
项目源码
文件源码
阅读 21
收藏 0
点赞 0
评论 0
def plot_feat_hist(data_name_list, filename=None):
if len(data_name_list) > 1:
assert filename is not None
pylab.figure(num=None, figsize=(8, 6))
num_rows = int(1 + (len(data_name_list) - 1) / 2)
num_cols = int(1 if len(data_name_list) == 1 else 2)
pylab.figure(figsize=(5 * num_cols, 4 * num_rows))
for i in range(num_rows):
for j in range(num_cols):
pylab.subplot(num_rows, num_cols, 1 + i * num_cols + j)
x, name = data_name_list[i * num_cols + j]
pylab.title(name)
pylab.xlabel('Value')
pylab.ylabel('Fraction')
# the histogram of the data
max_val = np.max(x)
if max_val <= 1.0:
bins = 50
elif max_val > 50:
bins = 50
else:
bins = max_val
n, bins, patches = pylab.hist(
x, bins=bins, normed=1, alpha=0.75)
pylab.grid(True)
if not filename:
filename = "feat_hist_%s.png" % name.replace(" ", "_")
pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight")
utils.py 文件源码
项目:Building-Machine-Learning-Systems-With-Python-Second-Edition
作者: PacktPublishing
项目源码
文件源码
阅读 22
收藏 0
点赞 0
评论 0
def plot_feat_hist(data_name_list, filename=None):
pylab.clf()
num_rows = 1 + (len(data_name_list) - 1) / 2
num_cols = 1 if len(data_name_list) == 1 else 2
pylab.figure(figsize=(5 * num_cols, 4 * num_rows))
for i in range(num_rows):
for j in range(num_cols):
pylab.subplot(num_rows, num_cols, 1 + i * num_cols + j)
x, name = data_name_list[i * num_cols + j]
pylab.title(name)
pylab.xlabel('Value')
pylab.ylabel('Density')
# the histogram of the data
max_val = np.max(x)
if max_val <= 1.0:
bins = 50
elif max_val > 50:
bins = 50
else:
bins = max_val
n, bins, patches = pylab.hist(
x, bins=bins, normed=1, facecolor='green', alpha=0.75)
pylab.grid(True)
if not filename:
filename = "feat_hist_%s.png" % name
pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight")
def plot_feat_hist(data_name_list, filename=None):
if len(data_name_list)>1:
assert filename is not None
pylab.figure(num=None, figsize=(8, 6))
num_rows = 1 + (len(data_name_list) - 1) / 2
num_cols = 1 if len(data_name_list) == 1 else 2
pylab.figure(figsize=(5 * num_cols, 4 * num_rows))
for i in range(num_rows):
for j in range(num_cols):
pylab.subplot(num_rows, num_cols, 1 + i * num_cols + j)
x, name = data_name_list[i * num_cols + j]
pylab.title(name)
pylab.xlabel('Value')
pylab.ylabel('Fraction')
# the histogram of the data
max_val = np.max(x)
if max_val <= 1.0:
bins = 50
elif max_val > 50:
bins = 50
else:
bins = max_val
n, bins, patches = pylab.hist(
x, normed=1, facecolor='blue', alpha=0.75)
pylab.grid(True)
if not filename:
filename = "feat_hist_%s.png" % name.replace(" ", "_")
pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight")
def plot_feat_hist(data_name_list, filename=None):
if len(data_name_list)>1:
assert filename is not None
pylab.figure(num=None, figsize=(8, 6))
num_rows = 1 + (len(data_name_list) - 1) / 2
num_cols = 1 if len(data_name_list) == 1 else 2
pylab.figure(figsize=(5 * num_cols, 4 * num_rows))
for i in range(num_rows):
for j in range(num_cols):
pylab.subplot(num_rows, num_cols, 1 + i * num_cols + j)
x, name = data_name_list[i * num_cols + j]
pylab.title(name)
pylab.xlabel('Value')
pylab.ylabel('Fraction')
# the histogram of the data
max_val = np.max(x)
if max_val <= 1.0:
bins = 50
elif max_val > 50:
bins = 50
else:
bins = max_val
n, bins, patches = pylab.hist(
x, normed=1, facecolor='blue', alpha=0.75)
pylab.grid(True)
if not filename:
filename = "feat_hist_%s.png" % name.replace(" ", "_")
pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight")
def twohists(x1,x2,xmin,xmax,range=None,x1leg='$x_1$',x2leg='$x_2$',xlabel='',fig=1,sharey=False,fontsize=12,bins1=10,bins2=10):
"""
Script that plots two histograms of quantities x1 and x2
sharing the same X-axis.
:param x1,x2: arrays with data to be plotted
:param xmin,xmax: lower and upper range of plotted values, will be used to set a consistent x-range
for both histograms.
:param x1leg, x2leg: legends for each histogram
:param xlabel: self-explanatory.
:param bins1,bins2: number of bins in each histogram
:param fig: which plot window should I use?
:param range: in the form (xmin,xmax), same as range argument for hist and applied to both
histograms.
Inspired by `Scipy <http://www.scipy.org/Cookbook/Matplotlib/Multiple_Subplots_with_One_Axis_Label>`_.
"""
pylab.rcParams.update({'font.size': fontsize})
fig=pylab.figure(fig)
pylab.clf()
a=fig.add_subplot(2,1,1)
if sharey==True:
b=fig.add_subplot(2,1,2, sharex=a, sharey=a)
else:
b=fig.add_subplot(2,1,2, sharex=a)
a.hist(x1,bins1,label=x1leg,color='b',histtype='stepfilled',range=range)
a.legend(loc='best',frameon=False)
a.set_xlim(xmin,xmax)
b.hist(x2,bins2,label=x2leg,color='r',histtype='stepfilled',range=range)
b.legend(loc='best',frameon=False)
pylab.setp(a.get_xticklabels(), visible=False)
b.set_xlabel(xlabel)
b.set_ylabel('Number',verticalalignment='bottom')
pylab.minorticks_on()
pylab.subplots_adjust(hspace=0.15)
pylab.draw()
pylab.show()
def threehists(x1,x2,x3,xmin,xmax,x1leg='$x_1$',x2leg='$x_2$',x3leg='$x_3$',xlabel='',fig=1,sharey=False,fontsize=12):
"""
Script that plots three histograms of quantities x1, x2 and x3
sharing the same X-axis.
Arguments:
- x1,x2,x3: arrays with data to be plotted
- xmin,xmax: lower and upper range of plotted values, will be used to set a consistent x-range for both histograms.
- x1leg, x2leg, x3leg: legends for each histogram
- xlabel: self-explanatory.
- sharey: sharing the Y-axis among the histograms?
- fig: which plot window should I use?
Example:
x1=Lbol(AD), x2=Lbol(JD), x3=Lbol(EHF10)
>>> threehists(x1,x2,x3,38,44,'AD','JD','EHF10','$\log L_{\\rm bol}$ (erg s$^{-1}$)',sharey=True)
Inspired by `Scipy <http://www.scipy.org/Cookbook/Matplotlib/Multiple_Subplots_with_One_Axis_Label>`_.
"""
pylab.rcParams.update({'font.size': fontsize})
fig=pylab.figure(fig)
pylab.clf()
a=fig.add_subplot(3,1,1)
if sharey==True:
b=fig.add_subplot(3,1,2, sharex=a, sharey=a)
c=fig.add_subplot(3,1,3, sharex=a, sharey=a)
else:
b=fig.add_subplot(3,1,2, sharex=a)
c=fig.add_subplot(3,1,3, sharex=a)
a.hist(x1,label=x1leg,color='b',histtype='stepfilled')
a.legend(loc='best',frameon=False)
a.set_xlim(xmin,xmax)
b.hist(x2,label=x2leg,color='r',histtype='stepfilled')
b.legend(loc='best',frameon=False)
c.hist(x3,label=x3leg,color='y',histtype='stepfilled')
c.legend(loc='best',frameon=False)
pylab.setp(a.get_xticklabels(), visible=False)
pylab.setp(b.get_xticklabels(), visible=False)
c.set_xlabel(xlabel)
b.set_ylabel('Number')
pylab.minorticks_on()
pylab.subplots_adjust(hspace=0.15)
pylab.draw()
pylab.show()
def fourcumplot(x1,x2,x3,x4,xmin,xmax,x1leg='$x_1$',x2leg='$x_2$',x3leg='$x_3$',x4leg='$x_3$',xlabel='',ylabel='$N(x>x\')$',fig=1,sharey=False,fontsize=12,bins1=50,bins2=50,bins3=50,bins4=50):
"""
Script that plots the cumulative histograms of four variables x1, x2, x3 and x4
sharing the same X-axis. For each bin, Y is the fraction of the sample
with values above X.
Arguments:
- x1,x2,x3,x4: arrays with data to be plotted
- xmin,xmax: lower and upper range of plotted values, will be used to set a consistent x-range
for both histograms.
- x1leg, x2leg, x3leg, x4leg: legends for each histogram
- xlabel: self-explanatory.
- sharey: sharing the Y-axis among the histograms?
- bins1,bins2,...: number of bins in each histogram
- fig: which plot window should I use?
Inspired by `Scipy <http://www.scipy.org/Cookbook/Matplotlib/Multiple_Subplots_with_One_Axis_Label>`_.
v1 Jun. 2012: inherited from fourhists.
"""
pylab.rcParams.update({'font.size': fontsize})
fig=pylab.figure(fig)
pylab.clf()
a=fig.add_subplot(4,1,1)
if sharey==True:
b=fig.add_subplot(4,1,2, sharex=a, sharey=a)
c=fig.add_subplot(4,1,3, sharex=a, sharey=a)
d=fig.add_subplot(4,1,4, sharex=a, sharey=a)
else:
b=fig.add_subplot(4,1,2, sharex=a)
c=fig.add_subplot(4,1,3, sharex=a)
d=fig.add_subplot(4,1,4, sharex=a)
a.hist(x1,bins1,label=x1leg,color='b',cumulative=-True,normed=True,histtype='stepfilled')
a.legend(loc='best',frameon=False)
a.set_xlim(xmin,xmax)
b.hist(x2,bins2,label=x2leg,color='r',cumulative=-True,normed=True,histtype='stepfilled')
b.legend(loc='best',frameon=False)
c.hist(x3,bins3,label=x3leg,color='y',cumulative=-True,normed=True,histtype='stepfilled')
c.legend(loc='best',frameon=False)
d.hist(x4,bins4,label=x4leg,color='g',cumulative=-True,normed=True,histtype='stepfilled')
d.legend(loc='best',frameon=False)
pylab.setp(a.get_xticklabels(), visible=False)
pylab.setp(b.get_xticklabels(), visible=False)
pylab.setp(c.get_xticklabels(), visible=False)
d.set_xlabel(xlabel)
c.set_ylabel(ylabel)
pylab.minorticks_on()
pylab.subplots_adjust(hspace=0.15)
pylab.draw()
pylab.show()