python类close()的实例源码

tools.py 文件源码 项目:learning-class-invariant-features 作者: sbelharbi 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def plot_debug_grad(debug, tag, fold_exp, trg):
    plt.close("all")
    # f = plt.figure(figsize=(15, 10.8), dpi=300)
    nbr_rows = int(len(debug["grad_sup"][0])/2)
    f, axs = plt.subplots(nbr_rows, 2, sharex=True, sharey=False,
                          figsize=(15, 12.8), dpi=300)

    if trg == "sup":
        grad = np.array(debug["grad_sup"])
    elif trg == "hint":
        grad = np.array(debug["grad_hint"])
    print grad.shape, trg
    j = 0
    for i in range(0, nbr_rows*2, 2):
        w_vl = grad[:, i]
        b_vl = grad[:, i+1]
        axs[j, 0].plot(w_vl, label=trg)
        axs[j, 0].set_title("w"+str(j))
        axs[j, 1].plot(b_vl, label=trg)
        axs[j, 1].set_title("b"+str(j))
        axs[j, 0].grid(True)
        axs[j, 1].grid(True)
        j += 1
    f.suptitle("Grad sup/hint:" + tag, fontsize=8)
    plt.legend()
    f.savefig(fold_exp+"/grad_" + trg + ".png", bbox_inches='tight')
    plt.close("all")
    del f
tools.py 文件源码 项目:learning-class-invariant-features 作者: sbelharbi 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def plot_debug_ratio_grad(debug, fold_exp, r="h/s"):
    plt.close("all")
    # f = plt.figure(figsize=(15, 10.8), dpi=300)
    nbr_rows = int(len(debug["grad_sup"][0])/2)
    f, axs = plt.subplots(nbr_rows, 2, sharex=True, sharey=False,
                          figsize=(15, 12.8), dpi=300)

    grads = np.array(debug["grad_sup"])
    gradh = np.array(debug["grad_hint"])
    if gradh.size != grads.size:
        print "Can't calculate the ratio. It looks like you divided the " +\
            "hint batch..."
        return 0
    print gradh.shape, grads.shape
    j = 0
    for i in range(0, nbr_rows*2, 2):
        w_vls = grads[:, i]
        b_vls = grads[:, i+1]
        w_vl_h = gradh[:, i]
        b_vlh = gradh[:, i+1]
        if r == "h/s":
            ratio_w = np.divide(w_vl_h, w_vls)
            ratio_b = np.divide(b_vlh, b_vls)
        elif r == "s/h":
            ratio_w = np.divide(w_vls, w_vl_h)
            ratio_b = np.divide(b_vls, b_vlh)
        else:
            raise ValueError("Either h/s or s/h.")
        axs[j, 0].plot(ratio_w, label=r)
        axs[j, 0].set_title("w"+str(j))
        axs[j, 1].plot(ratio_b, label=r)
        axs[j, 1].set_title("b"+str(j))
        axs[j, 0].grid(True)
        axs[j, 1].grid(True)
        j += 1
    f.suptitle("Ratio gradient: " + r, fontsize=8)
    plt.legend()
    f.savefig(fold_exp+"/ratio_grad_" + r.replace("/", "-") + ".png",
              bbox_inches='tight')
    plt.close("all")
    del f
tools.py 文件源码 项目:learning-class-invariant-features 作者: sbelharbi 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plot_representations(X, y, title):
    """Plot distributions and thier labels."""
    x_min, x_max = np.min(X, 0), np.max(X, 0)
    X = (X - x_min) / (x_max - x_min)

    f = plt.figure(figsize=(15, 10.8), dpi=300)
#    ax = plt.subplot(111)
    for i in range(X.shape[0]):
        plt.text(X[i, 0], X[i, 1], str(y[i]),
                 color=plt.cm.Set1(y[i] / 10.),
                 fontdict={'weight': 'bold', 'size': 9})

#    if hasattr(offsetbox, 'AnnotationBbox'):
#        # only print thumbnails with matplotlib > 1.0
#        shown_images = np.array([[1., 1.]])  # just something big
#        for i in range(digits.data.shape[0]):
#            dist = np.sum((X[i] - shown_images) ** 2, 1)
#            if np.min(dist) < 4e-3:
#                # don't show points that are too close
#                continue
#            shown_images = np.r_[shown_images, [X[i]]]
#            imagebox = offsetbox.AnnotationBbox(
#                offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r),
#                X[i])
#            ax.add_artist(imagebox)
    plt.xticks([]), plt.yticks([])
    if title is not None:
        plt.title(title)
    return f
test_graphics.py 文件源码 项目:WNTR 作者: USEPA 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_plot_network1():
    filename = abspath(join(testdir, 'plot_network1.png'))
    if isfile(filename):
        os.remove(filename)

    inp_file = join(ex_datadir,'Net6.inp')
    wn = wntr.network.WaterNetworkModel(inp_file)

    plt.figure()
    wntr.graphics.plot_network(wn)
    plt.savefig(filename, format='png')
    plt.close()

    assert_true(isfile(filename))
test_graphics.py 文件源码 项目:WNTR 作者: USEPA 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_plot_tank_curve1():
    filename = abspath(join(testdir, 'plot_pump_curve1.png'))
    if isfile(filename):
        os.remove(filename)

    inp_file = join(ex_datadir,'Net3.inp')
    wn = wntr.network.WaterNetworkModel(inp_file)
    pump = wn.get_link('10')

    plt.figure()
    wntr.graphics.plot_pump_curve(pump)
    plt.savefig(filename, format='png')
    plt.close()

    assert_true(isfile(filename))
tdose_utilities.py 文件源码 项目:TDOSE 作者: kasperschmidt 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def generate_setup_template_modify(outputfile='./tdose_setup_template_modify.txt',clobber=False,verbose=True):
    """
    Generate setup text file template for modifying data cubes

    --- INPUT ---
    outputfile      The name of the output which will contain the TDOSE setup template
    clobber         Overwrite files if they exist
    verbose         Toggle verbosity

    --- EXAMPLE OF USE ---
    import tdose_utilities as tu

    filename = './tdose_setup_template_modify_new.txt'
    tu.generate_setup_template_modify(outputfile=filename,clobber=True)
    setup    = tu.load_setup(setupfile=filename)

    """
    if verbose: print ' --- tdose_utilities.generate_setup_template_modify() --- '
    #------------------------------------------------------------------------------------------------------
    if os.path.isfile(outputfile) & (clobber == False):
        sys.exit(' ---> Outputfile already exists and clobber=False ')
    else:
        if verbose: print ' - Will store setup template in '+outputfile
        if os.path.isfile(outputfile) & (clobber == True):
            if verbose: print ' - Output already exists but clobber=True so overwriting it '

        setuptemplate = """
#---------------------------------------------START OF TDOSE MODIFY SETUP---------------------------------------------
#
# Template for TDOSE (http://github.com/kasperschmidt/TDOSE) setup file for modifyinf data cubes
# Generated with tdose_utilities.generate_setup_template_modify() on %s
# Cube modifications are run independent of tdose.perform_extraction() with tdose.modify_cube()
#
# - - - - - - - - - - - - - - - - - - - - - - - - -  MODIFYING CUBE - - - - - - - - - - - - - - - - - - - - - - - - - -
data_cube              /path/datacube.fits                # Path and name of fits file containing data cube to modify
cube_extension         DATA_DCBGC                         # Name or number of fits extension containing data cube
source_model_cube      /path/tdose_source_modelcube.fits  # Path and name of fits file containing source model cube
source_extension       DATA_DCBGC                         # Name or number of fits extension containing source model cube

modyified_cube         tdose_modified_datacube            # Name extension of file containing modified data cube.

modify_sources_list    [1,2,5]                            # List of IDs of sources to remove from data cube using source model cube.
                                                          # For long list of IDs provide path and name of file containing IDs (only)
sources_action         remove                             # Indicate how to modify the data cube. Chose between:
                                                          #    'remove'     Sources in modify_sources_list are removed from data cube
                                                          #    'keep'       All sources except the sources in modify_sources_list are removed from data cube
#----------------------------------------------END OF TDOSE MODIFY SETUP----------------------------------------------

""" % (tu.get_now_string())
        fout = open(outputfile,'w')
        fout.write(setuptemplate)
        fout.close()
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
tdose_utilities.py 文件源码 项目:TDOSE 作者: kasperschmidt 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def galfit_model_ds9region(models,regionfileextension='ds9region',regcolor='red',clobber=False,verbose=True):
    """
    Generate DS9 region file to indicate GALFIT components

    --- INPUT ---
    model                  List of GALFIT models to generate region files for
    regionfileextension    Extension for naming the DS9 region file
    regcolor               Color of regions to draw
    clobber                Overwrite existing file?
    verbose                Toggle verbosity

    --- EXAMPLE OF USE ---

    models = glob.glob('/path/to/models/model*.fits')
    tu.galfit_model_ds9region(models,clobber=False)

    """
    Nmodels = len(models)
    if verbose: print ' - Generating DS9 region files for '+str(Nmodels)+' GALFIT models provided '
    for model in models:
        modelhdr   = pyfits.open(model)[2].header
        comkeys    = []
        regionfile = model.replace('.fits','_'+regionfileextension+'.reg')
        for key in modelhdr.keys():
            if 'COMP_' in key:
                comkeys.append(key)

        if os.path.isfile(regionfile):
            if not clobber:
                sys.exit(' ---> File already exists and clobber = False')
        fout = open(regionfile,'w')
        fout.write("# Region file format: DS9 version 4.1 \nimage\n")

        for comp in comkeys:
            compNo = comp.split('OMP_')[-1]
            if not modelhdr[comp] == 'sky':
                XC, XCERR = tu.galfit_getheadervalue(compNo,'XC',modelhdr)
                YC, YCERR = tu.galfit_getheadervalue(compNo,'YC',modelhdr)

                regstr = '# text(%s,%s) color=%s font="times 20 bold roman" text={%s} \n' % (XC,YC,regcolor,compNo)
                fout.write(regstr)

        fout.close()
        if verbose: print ' - Saved region file to \n   '+regionfile

# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
tools.py 文件源码 项目:structured-output-ae 作者: sbelharbi 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def plot_fig(values, title, x_str, y_str, path, best_iter, std_vals=None):
    """Plot some values.
    Input:
         values: list or numpy.ndarray of values to plot (y)
         title: string; the title of the plot.
         x_str: string; the name of the x axis.
         y_str: string; the name of the y axis.
         path: string; path where to save the figure.
         best_iter: integer. The epoch of the best iteration.
         std_val: List or numpy.ndarray of standad deviation values that
             corresponds to each value in 'values'.
    """
    floating = 6
    prec = "%." + str(floating) + "f"

    if best_iter >= 0:
        if isinstance(values, list):
            if best_iter >= len(values):
                best_iter = -1
        if isinstance(values, np.ndarray):
            if best_iter >= np.size:
                best_iter = -1

        v = str(prec % np.float(values[best_iter]))
    else:
        v = str(prec % np.float(values[-1]))
        best_iter = -1
    if best_iter == -1:
        best_iter = len(values)
    fig = plt.figure()
    plt.plot(
        values,
        label="lower val: " + v + " at " + str(best_iter) + " " +
        x_str)
    plt.xlabel(x_str)
    plt.ylabel(y_str)
    plt.title(title, fontsize=8)
    plt.legend(loc='upper right', fancybox=True, shadow=True, prop={'size': 8})
    plt.grid(True)
    fig.savefig(path, bbox_inches='tight')
    plt.close('all')
    del fig
selftest.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_abu_chart(self):
        from nugridpy import utils,ppn,data_plot
        import matplotlib
        matplotlib.use('agg')
        import matplotlib.pylab as mpy
        import os

        # Perform tests within temporary directory
        with TemporaryDirectory() as tdir:
            # wget the data for a ppn run from the CADC VOspace
            n = 3
            for cycle in range(0,n):
                cycle_str = str(cycle).zfill(2)
                os.system("wget -q --content-disposition --directory '" + tdir + "' "
                          + "'http://www.canfar.phys.uvic.ca/vospace/synctrans?TARGET="\
                          + "vos%3A%2F%2Fcadc.nrc.ca%21vospace%2Fnugrid%2Fdata%2Fprojects%2Fppn%2Fexamples%2F"\
                          + "ppn_Hburn_simple%2Fiso_massf000" + cycle_str + ".DAT&DIRECTION=pullFromVoSpace&PROTOCOL"\
                          + "=ivo%3A%2F%2Fivoa.net%2Fvospace%2Fcore%23httpget'")

            # test_data_dir should point to the correct location of a set of abundances data file
            #nugrid_dir= os.path.dirname(os.path.dirname(ppn.__file__))
            #NuPPN_dir= nugrid_dir + "/NuPPN"
            #test_data_dir= NuPPN_dir + "/examples/ppn_C13_pocket/master_results"

            p=ppn.abu_vector(tdir) # TODO: this function fails to raise an exception if path is not found!
            mp=p.get('mod')
            if len(mp) == 0:
                raise IOError("Cannot locate a set of abundance data files")
            sparse=10
            cycles=mp[:1000:sparse]
            form_str='%6.1F'
            form_str1='%4.3F'

            i=0
            for cyc in cycles:
                T9  = p.get('t9',fname=cyc)
                Rho = p.get('rho',fname=cyc)
                mod = p.get('mod',fname=cyc)
                # time= p.get('agej',fname=cyc)*utils.constants.one_year
                time= p.get('agej',fname=cyc)
                mpy.close(i);mpy.figure(i);i += 1
                p.abu_chart(cyc,mass_range=[0,41],plotaxis=[-1,22,-1,22],lbound=(-6,0),show=False)
                mpy.title(str(mod)+' t='+form_str%time+'yr $T_9$='+form_str1%T9+' $\\rho$='+str(Rho))
                png_file='abu_chart_'+str(cyc).zfill(len(str(max(mp))))+'.png'
                mpy.savefig(png_file)
                self.assertTrue(os.path.exists(png_file))
                os.remove(png_file)
plot_individual_genes.py 文件源码 项目:TSS_detection 作者: ueser 项目源码 文件源码 阅读 15 收藏 0 点赞 0 评论 0
def plot_profiles_to_file(annot, pntr, ups=200, smooth_param=50):
    pp = PdfPages(options.save_path + 'Figures/individual_signals.pdf')
    clrs_ = ['red', 'blue', 'black', 'orange', 'magenta', 'cyan']
    vec_sense = {}
    vec_antisense = {}
    # for qq in tq(range(annot.shape[0])):
    for qq in tq(range(100)):

        chname = annot['chr'].iloc[qq]

        if annot['strand'].iloc[qq] == '+':
            start = annot['start'].iloc[qq] - ups
            stop = annot['end'].iloc[qq]
            for key in pntr.keys():
                vec_sense[key] = pntr[key][0].get_nparray(chname, start, stop - 1)
                vec_antisense[key] = pntr[key][1].get_nparray(chname, start, stop - 1)
            xran = np.arange(start, stop)
        else:
            start = annot['start'].iloc[qq]
            stop = annot['end'].iloc[qq] + ups
            for key in pntr.keys():
                vec_sense[key] = np.flipud(pntr[key][1].get_nparray(chname, start, stop))
                vec_antisense[key] = np.flipud(pntr[key][0].get_nparray(chname, start, stop))
            xran = np.arange(stop, start, -1)

        ax = {}
        fig = pl.figure()
        pl.title(annot['name'].iloc[qq])
        for i, key in enumerate(pntr.keys()):
            sm_vec_se = sm.smooth(vec_sense[key], smooth_param)[(smooth_param - 1):-(smooth_param - 1)]
            sm_vec_as = sm.smooth(vec_antisense[key], smooth_param)[(smooth_param - 1):-(smooth_param - 1)]
            ax[key] = pl.subplot(len(pntr), 1, i+1)
            ax[key].plot(xran, vec_sense[key], label=key, color=clrs_[i], alpha=0.5)
            ax[key].plot(xran, -vec_antisense[key], color=clrs_[i], alpha=0.5)
            ax[key].plot(xran, sm_vec_se,  color=clrs_[i], linewidth=2)
            ax[key].plot(xran, -sm_vec_as, color=clrs_[i], linewidth=2)
            ax[key].legend(loc='upper center', bbox_to_anchor=(0.5, 1.05), fontsize=6, ncol=1)
        pp.savefig()

        pl.close()
    pp.close()
    for pn in pntr.values():
        pn[0].close()
        pn[1].close()
plot_parameters_tried.py 文件源码 项目:MDI 作者: rafaelvalle 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def plot_2d(params_dir):
    model_dirs = [name for name in os.listdir(params_dir)
                  if os.path.isdir(os.path.join(params_dir, name))]
    if len(model_dirs) == 0:
      model_dirs = [params_dir]


    colors = plt.get_cmap('plasma')
    plt.figure(figsize=(20, 10))
    ax = plt.subplot(111)
    ax.set_xlabel('Learning Rate')
    ax.set_ylabel('Error rate')

    i = 0
    for model_dir in model_dirs:
        model_df = pd.DataFrame()
        for param_path in glob.glob(os.path.join(params_dir,
                                                 model_dir) + '/*.h5'):
            param = dd.io.load(param_path)
            gd = {'learning rate': param['hyperparameters']['learning_rate'],
                  'momentum': param['hyperparameters']['momentum'],
                  'dropout': param['hyperparameters']['dropout'],
                  'val. objective': param['best_epoch']['validate_objective']}
            model_df = model_df.append(pd.DataFrame(gd, index=[0]),
                                       ignore_index=True)
        if i != len(model_dirs) - 1:
            ax.scatter(model_df['learning rate'],
                       model_df['val. objective'],
                       s=128,
                       marker=(i+3, 0),
                       edgecolor='black',
                       linewidth=model_df['dropout'],
                       label=model_dir,
                       c=model_df['momentum'],
                       cmap=colors)
        else:
            im = ax.scatter(model_df['learning rate'],
                            model_df['val. objective'],
                            s=128,
                            marker=(i+3, 0),
                            edgecolor='black',
                            linewidth=model_df['dropout'],
                            label=model_dir,
                            c=model_df['momentum'],
                            cmap=colors)
        i += 1

    plt.colorbar(im, label='Momentum')
    plt.legend()
    plt.show()
    plt.savefig('{}.eps'.format(os.path.join(IMAGES_DIRECTORY, 'params2d')), format='eps', dpi=1000)
    plt.close()
Drawing.py 文件源码 项目:options 作者: mcmachado 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def plotPolicy(self, policy, prefix):
        plt.clf()
        for idx in xrange(len(policy)):
            i, j = self.env.getStateXY(idx)

            dx = 0
            dy = 0
            if policy[idx] == 0: # up
                dy = 0.35
            elif policy[idx] == 1: #right
                dx = 0.35
            elif policy[idx] == 2: #down
                dy = -0.35
            elif policy[idx] == 3: #left
                dx = -0.35
            elif self.matrixMDP[i][j] != -1 and policy[idx] == 4: # termination
                circle = plt.Circle(
                    (j + 0.5, self.numRows - i + 0.5 - 1), 0.025, color='k')
                plt.gca().add_artist(circle)

            if self.matrixMDP[i][j] != -1:
                plt.arrow(j + 0.5, self.numRows - i + 0.5 - 1, dx, dy,
                    head_width=0.05, head_length=0.05, fc='k', ec='k')
            else:
                plt.gca().add_patch(
                    patches.Rectangle(
                    (j, self.numRows - i - 1), # (x,y)
                    1.0,                   # width
                    1.0,                   # height
                    facecolor = "gray"
                    )
                )

        plt.xlim([0, self.numCols])
        plt.ylim([0, self.numRows])


        for i in xrange(self.numCols):
            plt.axvline(i, color='k', linestyle=':')
        plt.axvline(self.numCols, color='k', linestyle=':')

        for j in xrange(self.numRows):
            plt.axhline(j, color='k', linestyle=':')
        plt.axhline(self.numRows, color='k', linestyle=':')

        plt.savefig(self.outputPath + prefix + 'policy.png')
        plt.close()
test_io.py 文件源码 项目:pecos 作者: sandialabs 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_write_monitoring_report2():# with test results and graphics (encoded and linked)
    filename1 = abspath(join(testdir, 'test_write_monitoring_report2_linked_graphics.html'))
    filename2 = abspath(join(testdir, 'test_write_monitoring_report2_encoded_graphics.html'))
    graphics_filename = abspath(join(testdir, 'custom_graphic.png'))
    if isfile(filename1):
        os.remove(filename1)
    if isfile(filename2):
        os.remove(filename2)
    if isfile(graphics_filename):
        os.remove(graphics_filename)

    pecos.logger.initialize()
    logger = logging.getLogger('pecos')

    pm = pecos.monitoring.PerformanceMonitoring()
    periods = 5
    index = pd.date_range('1/1/2016', periods=periods, freq='H')
    data = np.array([[1,2,3], [4,5,6], [7,8,9], [10,11,12], [13,14,15]])
    df = pd.DataFrame(data=data, index=index, columns=['A', 'B', 'C'])
    tfilter = pd.Series(data = (df.index < index[3]), index = df.index)
    pm.add_dataframe(df, 'test', True)
    pm.add_time_filter(tfilter)    
    pm.check_range([0,7]) # 2 test failures

    filename_root = abspath(join(testdir, 'monitoring_report_graphic'))
    test_results_graphics = pecos.graphics.plot_test_results(filename_root, pm)

    plt.figure()
    plt.plot([1, 2, 3],[1, 2, 3])
    plt.savefig(graphics_filename, format='png')
    plt.close()
    custom_graphics = [graphics_filename]

    logger.warning('Add a note')

    pecos.io.write_monitoring_report(filename1, pm, test_results_graphics, custom_graphics, encode=False)

    assert_true(isfile(filename1))

    pecos.io.write_monitoring_report(filename2, pm, test_results_graphics, custom_graphics, encode=True)

    assert_true(isfile(filename2))
fit_logic_standalone.py 文件源码 项目:qudi 作者: Ulm-IQO 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def gaussian_twoD_testing():
    """ Implement and check the estimator for a 2D gaussian fit. """

    data = np.empty((121,1))
    amplitude=np.random.normal(3e5,1e5)
    center_x=91+np.random.normal(0,0.8)
    center_y=14+np.random.normal(0,0.8)
    sigma_x=np.random.normal(0.7,0.2)
    sigma_y=np.random.normal(0.7,0.2)
    offset=0
    x = np.linspace(90,92,11)
    y = np.linspace(13,15,12)
    xx, yy = np.meshgrid(x, y)

    axes=(xx.flatten(), yy.flatten())

    theta_here=10./360.*(2*np.pi)

#            data=qudi_fitting.twoD_gaussian_function((xx,yy),*(amplitude,center_x,center_y,sigma_x,sigma_y,theta_here,offset))
    gmod,params = qudi_fitting.make_twoDgaussian_model()

    data = gmod.eval(x=axes, amplitude=amplitude, center_x=center_x,
                     center_y=center_y, sigma_x=sigma_x, sigma_y=sigma_y,
                     theta=theta_here, offset=offset)
    data += 50000*np.random.random_sample(np.shape(data))

    gmod, params = qudi_fitting.make_twoDgaussian_model()

    para=Parameters()
#    para.add('theta',vary=False)
#    para.add('center_x',expr='0.5*center_y')
#    para.add('sigma_x',min=0.2*((92.-90.)/11.), max=   10*(x[-1]-y[0]) )
#    para.add('sigma_y',min=0.2*((15.-13.)/12.), max=   10*(y[-1]-y[0]))
#    para.add('center_x',value=40,min=50,max=100)

    result = qudi_fitting.make_twoDgaussian_fit(xy_axes=axes, data=data)#,add_parameters=para)

#
#            FIXME: What does "Tolerance seems to be too small." mean in message?
#            print(result.message)
    plt.close('all')

    fig, ax = plt.subplots(1, 1)
    ax.hold(True)
    ax.imshow(result.data.reshape(len(y),len(x)),
              cmap=plt.cm.jet, origin='bottom', extent=(x.min(), x.max(),
                                       y.min(), y.max()),interpolation="nearest")
    ax.contour(x, y, result.best_fit.reshape(len(y),len(x)), 8
                , colors='w')
    plt.show()
#    plt.close('all')

    print(result.fit_report())

#            print('Message:',result.message)
tools.py 文件源码 项目:learning-class-invariant-features 作者: sbelharbi 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def plot_fig(values, title, x_str, y_str, path, best_iter, std_vals=None):
    """Plot some values.
    Input:
         values: list or numpy.ndarray of values to plot (y)
         title: string; the title of the plot.
         x_str: string; the name of the x axis.
         y_str: string; the name of the y axis.
         path: string; path where to save the figure.
         best_iter: integer. The epoch of the best iteration.
         std_val: List or numpy.ndarray of standad deviation values that
             corresponds to each value in 'values'.
    """
    floating = 6
    prec = "%." + str(floating) + "f"

    if best_iter >= 0:
        if isinstance(values, list):
            if best_iter >= len(values):
                best_iter = -1
        if isinstance(values, np.ndarray):
            if best_iter >= np.size:
                best_iter = -1

        v = str(prec % np.float(values[best_iter]))
    else:
        v = str(prec % np.float(values[-1]))
        best_iter = -1
    if best_iter == -1:
        best_iter = len(values)
    fig = plt.figure()
    plt.plot(
        values,
        label="lower val: " + v + " at " + str(best_iter) + " " +
        x_str)
    plt.xlabel(x_str)
    plt.ylabel(y_str)
    plt.title(title, fontsize=8)
    plt.legend(loc='upper right', fancybox=True, shadow=True, prop={'size': 8})
    plt.grid(True)
    fig.savefig(path, bbox_inches='tight')
    plt.close('all')
    del fig


问题


面经


文章

微信
公众号

扫码关注公众号