python类imshow()的实例源码

tools.py 文件源码 项目:structured-output-ae 作者: sbelharbi 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def plot_x_y_yhat(x, y, y_hat, xsz, ysz, binz=False):
    """Plot x, y and y_hat side by side."""
    plt.close("all")
    f = plt.figure(figsize=(15, 10.8), dpi=300)
    gs = gridspec.GridSpec(1, 3)
    if binz:
        y_hat = (y_hat > 0.5) * 1.
    ims = [x, y, y_hat]
    tils = [
        "x:" + str(xsz) + "x" + str(xsz),
        "y:" + str(ysz) + "x" + str(ysz),
        "yhat:" + str(ysz) + "x" + str(ysz)]
    for n, ti in zip([0, 1, 2], tils):
        f.add_subplot(gs[n])
        if n == 0:
            plt.imshow(ims[n], cmap=cm.Greys_r)
        else:
            plt.imshow(ims[n], cmap=cm.Greys_r)
        plt.title(ti)

    return f
tools.py 文件源码 项目:structured-output-ae 作者: sbelharbi 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plot_x_x_yhat(x, x_hat):
    """Plot x, y and y_hat side by side."""
    plt.close("all")
    f = plt.figure()  # figsize=(15, 10.8), dpi=300
    gs = gridspec.GridSpec(1, 2)
    ims = [x, x_hat]
    tils = [
        "xin:" + str(x.shape[0]) + "x" + str(x.shape[1]),
        "xout:" + str(x.shape[1]) + "x" + str(x_hat.shape[1])]
    for n, ti in zip([0, 1], tils):
        f.add_subplot(gs[n])
        plt.imshow(ims[n], cmap=cm.Greys_r)
        plt.title(ti)
        ax = f.gca()
        ax.set_axis_off()

    return f
old_camera.py 文件源码 项目:yt 作者: yt-project 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def show_mpl(self, im, enhance=True, clear_fig=True):
        if self._pylab is None:
            import pylab
            self._pylab = pylab
        if self._render_figure is None:
            self._render_figure = self._pylab.figure(1)
        if clear_fig: self._render_figure.clf()

        if enhance:
            nz = im[im > 0.0]
            nim = im / (nz.mean() + 6.0 * np.std(nz))
            nim[nim > 1.0] = 1.0
            nim[nim < 0.0] = 0.0
            del nz
        else:
            nim = im
        ax = self._pylab.imshow(nim[:,:,:3]/nim[:,:,:3].max(), origin='upper')
        return ax
old_camera.py 文件源码 项目:yt 作者: yt-project 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def plot_allsky_healpix(image, nside, fn, label = "", rotation = None,
                        take_log = True, resolution=512, cmin=None, cmax=None):
    import matplotlib.figure
    import matplotlib.backends.backend_agg
    if rotation is None: rotation = np.eye(3).astype("float64")

    img, count = pixelize_healpix(nside, image, resolution, resolution, rotation)

    fig = matplotlib.figure.Figure((10, 5))
    ax = fig.add_subplot(1,1,1,projection='aitoff')
    if take_log: func = np.log10
    else: func = lambda a: a
    implot = ax.imshow(func(img), extent=(-np.pi,np.pi,-np.pi/2,np.pi/2),
                       clip_on=False, aspect=0.5, vmin=cmin, vmax=cmax)
    cb = fig.colorbar(implot, orientation='horizontal')
    cb.set_label(label)
    ax.xaxis.set_ticks(())
    ax.yaxis.set_ticks(())
    canvas = matplotlib.backends.backend_agg.FigureCanvasAgg(fig)
    canvas.print_figure(fn)
    return img, count
plot_marginals.py 文件源码 项目:sdp 作者: tansey 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plot_2d(dataset, nbins, data, extra=None):
    with sns.axes_style('white'):
        plt.rc('font', weight='bold')
        plt.rc('grid', lw=2)
        plt.rc('lines', lw=2)
        rows, cols = nbins
        im = np.zeros(nbins)
        for i in xrange(rows):
            for j in xrange(cols):
                im[i,j] = ((data[:,0] == i) & (data[:,1] == j)).sum()
        plt.imshow(im, cmap='gray_r', interpolation='none')
        if extra is not None:
            dataset += extra
        plt.savefig('plots/marginals-{0}.pdf'.format(dataset.replace('_','-')), bbox_inches='tight')
        plt.clf()
        plt.close()
plot_marginals.py 文件源码 项目:sdp 作者: tansey 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def plot_2d(dataset, nbins, data=None, extra=None):
    if data is None:
        data = np.loadtxt('experiments/uci/data/splits/{0}_all.csv'.format(dataset), skiprows=1, delimiter=',')[:,-2:]
    with sns.axes_style('white'):
        plt.rc('font', weight='bold')
        plt.rc('grid', lw=2)
        plt.rc('lines', lw=2)
        rows, cols = nbins
        im = np.zeros(nbins)
        for i in xrange(rows):
            for j in xrange(cols):
                im[i,j] = ((data[:,0] == i) & (data[:,1] == j)).sum()
        plt.imshow(im, cmap='gray_r', interpolation='none')
        if extra is not None:
            dataset += extra
        plt.savefig('plots/marginals-{0}.pdf'.format(dataset.replace('_','-')), bbox_inches='tight')
        plt.clf()
        plt.close()
plot.py 文件源码 项目:DeepMonster 作者: olimastro 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def show_samples(y, ndim, nb=10, cmap=''):
    if ndim == 4:
        for i in range(nb**2):
            plt.subplot(nb, nb, i+1)
            plt.imshow(y[i], cmap=cmap, interpolation='none')
            plt.axis('off')

    else:
        x = y[0]
        y = y[1]
        plt.figure(0)
        for i in range(10):
            plt.subplot(2, 5, i+1)
            plt.imshow(x[i], cmap=cmap, interpolation='none')
            plt.axis('off')

        plt.figure(1)
        for i in range(10):
            plt.subplot(2, 5, i+1)
            plt.imshow(y[i], cmap=cmap, interpolation='none')
            plt.axis('off')

    plt.show()
tools.py 文件源码 项目:learning-class-invariant-features 作者: sbelharbi 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plot_x_y_yhat(x, y, y_hat, xsz, ysz, binz=False):
    """Plot x, y and y_hat side by side."""
    plt.close("all")
    f = plt.figure(figsize=(15, 10.8), dpi=300)
    gs = gridspec.GridSpec(1, 3)
    if binz:
        y_hat = (y_hat > 0.5) * 1.
    ims = [x, y, y_hat]
    tils = [
        "x:" + str(xsz) + "x" + str(xsz),
        "y:" + str(ysz) + "x" + str(ysz),
        "yhat:" + str(ysz) + "x" + str(ysz)]
    for n, ti in zip([0, 1, 2], tils):
        f.add_subplot(gs[n])
        if n == 0:
            plt.imshow(ims[n], cmap=cm.Greys_r)
        else:
            plt.imshow(ims[n], cmap=cm.Greys_r)
        plt.title(ti)

    return f
train.py 文件源码 项目:tf-tutorial 作者: zchen0211 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def visualize_input(model):
  sess = tf.Session()
  sess.run(tf.global_variables_initializer())
  tf.train.start_queue_runners(sess=sess)

  batch_img, batch_cap = sess.run([model.images, model.input_seqs])
  # show first img
  batch_img = batch_img[0,:]
  batch_img = (batch_img + 1.) / 2.

  # show caption
  fid = open('/media/DATA/MS-COCO/word_counts.txt')
  raw_words = fid.readlines()
  words = []
  for raw_word in raw_words:
    word, _ = raw_word.split()
    words.append(word)
  batch_cap = batch_cap[0]
  sentence = []
  for tmp_id in batch_cap:
    sentence.append(words[int(tmp_id)])
  print(sentence)
  plt.imshow(batch_img)
  plt.show()
tdose_utilities.py 文件源码 项目:TDOSE 作者: kasperschmidt 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def gen_aperture(imgsize,ypos,xpos,radius,pixval=1,showaperture=False,verbose=True):
    """
    Generating an aperture image

    --- INPUT ---
    imgsize       The dimensions of the array to return. Expects [y-size,x-size].
                  The aperture will be positioned in the center of a (+/-x-size/2., +/-y-size/2) sized array
    ypos          Pixel position in the y direction
    xpos          Pixel position in the x direction
    radius        Radius of aperture in pixels
    showaperture  Display image of generated aperture
    verbose       Toggle verbosity

    --- EXAMPLE OF USE ---
    import tdose_utilities as tu
    apertureimg  = tu.gen_aperture([20,40],10,5,10,showaperture=True)
    apertureimg  = tu.gen_aperture([2000,4000],900,1700,150,showaperture=True)

    """
    if verbose: print ' - Generating aperture in image (2D array)'
    y , x    = np.ogrid[-ypos:imgsize[0]-ypos, -xpos:imgsize[1]-xpos]
    mask     = x*x + y*y <= radius**2.
    aperture = np.zeros(imgsize)

    if verbose: print ' - Assigning pixel value '+str(pixval)+' to aperture'
    aperture[mask] = pixval

    if showaperture:
        if verbose: print ' - Displaying resulting image of aperture'
        plt.imshow(aperture,interpolation='none')
        plt.title('Generated aperture')
        plt.show()

    return aperture
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
tdose_utilities.py 文件源码 项目:TDOSE 作者: kasperschmidt 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def gen_overview_plot_image(ax,imagefile,imgext=0,cubelayer=1,title='Img Title?',fontsize=6,lthick=2,alpha=0.5,
                            cmap='coolwarm'):
    """
    Plotting commands for image (cube layer) overview plotting

    --- INPUT ---

    cubelayer     If the content of the file is a cube, provide the cube layer to plot. If
                    cubelayer = 'fmax' the layer with most flux is plotted

    """

    ax.set_title(title,fontsize=fontsize)
    if os.path.isfile(imagefile):
        imgdata = pyfits.open(imagefile)[imgext].data

        if len(imgdata.shape) == 3: # it is a cube
            imgdata = imgdata[cubelayer,:,:]

        ax.imshow(imgdata, interpolation='None',cmap=cmap,aspect='equal', origin='lower')

        ax.set_xlabel('x-pixel')
        ax.set_ylabel('y-pixel ')
        ax.set_xticks([])
        ax.set_yticks([])

    else:
        textstr = 'No image\nfound'
        ax.text(1.0,22,textstr,horizontalalignment='center',verticalalignment='center',fontsize=fontsize)

        ax.set_ylim([28,16])
        ax.plot([0.0,2.0],[28,16],'r--',lw=lthick)
        ax.plot([2.0,0.0],[28,16],'r--',lw=lthick)

        ax.set_xlabel(' ')
        ax.set_ylabel(' ')
        ax.set_xticks([])
        ax.set_yticks([])

# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
tdose_model_FoV.py 文件源码 项目:TDOSE 作者: kasperschmidt 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def residual_multigauss(param, dataimage, nonfinite = 0.0, ravelresidual=True, showimages=False, verbose=False):
    """
    Calculating the residual bestween the multigaussian model with the paramters 'param' and the data.

    --- INPUT ---
    param         Parameters of multi-gaussian model to generate. See modelimage_multigauss() header for details
    dataimage     Data image to take residual
    nonfinite     Value to replace non-finite entries in residual with
    ravelresidual To np.ravel() the residual image set this to True. Needed by scipy.optimize.leastsq()
                  optimizer function
    showimages    To show model and residiual images set to True
    verbose       Toggle verbosity

    --- EXAMPLE OF USE ---
    import tdose_model_FoV as tmf
    param      = [18,31,1*0.3,2.1*0.3,1.2*0.3,30*0.3,    110,90,200*0.5,20.1*0.5,15.2*0.5,0*0.5]
    dataimg    = pyfits.open('/Users/kschmidt/work/TDOSE/mock_cube_sourcecat161213_tdose_mock_cube.fits')[0].data[0,:,:]
    residual   = tmf.residual_multigauss(param, dataimg, showimages=True)

    """
    if verbose: ' - Estimating residual (= model - data) between model and data image'
    imgsize      = dataimage.shape
    xgrid, ygrid = tu.gen_gridcomponents(imgsize)
    modelimg     = tmf.modelimage_multigauss((xgrid, ygrid),param,imgsize,showmodelimg=showimages, verbose=verbose)

    residualimg  = modelimg - dataimage

    if showimages:
        plt.imshow(residualimg,interpolation='none', vmin=1e-5, vmax=np.max(residualimg), norm=mpl.colors.LogNorm())
        plt.title('Resdiaul (= model - data) image')
        plt.show()

    if nonfinite is not None:
        residualimg[~np.isfinite(residualimg)] = 0.0

    if ravelresidual:
        residualimg = np.ravel(residualimg)

    return residualimg
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
imageSegmentor_v3.py 文件源码 项目:iFruitFly 作者: AdnanMuhib 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def imageSegmentor(imageFilePath, matFilePath):      


    mat = readMatFile(matFilePath);                                             # read mat file                                 
    image = getImage(imageFilePath);                                            # input the image
    typeOfFruit = getTypeOfFruit(image);                                        # on basis of counting or temperature value there are 2 types of fruit

    plt.imshow(image);

    _fft = getFFT(image);
    _mag = getMag(_fft);
    _ang = getAngleInDegrees(_fft);    

    edges = edgeDetector(image);                                                # detects the edges of the image
    _segmentation = segmentation(image, typeOfFruit);                           # segments different parts of image    
    filteredImage = filterImageFromSegmentation(image, _segmentation);          # filter the object part of image

    outputMatrix = imageMapping(filteredImage, mat['IR']);                      # map the value part of the image and else 0

    prefix =  re.split('IR_|.pgm', imageFilePath)[0];
    postfix = re.split('IR_|.pgm', imageFilePath)[1];    
    nameOfFile = prefix + "csv_" 
    nameOfFile = nameOfFile + postfix;
    print(nameOfFile);    
    writeToCSV(outputMatrix, nameOfFile);                                      # write it to the CSV file
    writeFF2CSV(outputMatrix, _mag, _ang, nameOfFile);  

    fig, ((fig1, fig2), (fig3, fig4)) = plt.subplots(2, 2, figsize = (10, 8));  # subplot the different plots
    fig1.imshow(image, cmap = plt.cm.gray);                                     # colormap used here is gray    
    fig2.imshow(image, cmap = plt.cm.gray); 
    fig3.imshow(edges, cmap = plt.cm.gray);
    fig4.imshow(filteredImage, cmap = plt.cm.gray);

    return

# header file
draw.py 文件源码 项目:uai2017_learning_to_acquire_information 作者: evanthebouncy 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def draw(m, name, extra=None):
  FIG.clf()

  matrix = m
  orig_shape = np.shape(matrix)
  # lose the channel shape in the end of orig_shape
  new_shape = orig_shape[:-1] 
  matrix = np.reshape(matrix, new_shape)
  ax = FIG.add_subplot(1,1,1)
  ax.set_aspect('equal')
  plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.gray)
  # plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.ocean)
  plt.colorbar()

  if extra != None:
    greens, reds = extra
    grn_x, grn_y, = greens
    red_x, red_y = reds
    plt.scatter(x=grn_x, y=grn_y, c='g', s=40)
    plt.scatter(x=red_x, y=red_y, c='r', s=40)
#  # put a blue dot at (10, 20)
#  plt.scatter([10], [20])
#  # put a red dot, size 40, at 2 locations:
#  plt.scatter(x=[3, 4], y=[5, 6], c='r', s=40)
#  # plt.plot()

  plt.savefig(name)
draw.py 文件源码 项目:uai2017_learning_to_acquire_information 作者: evanthebouncy 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def draw(m, name, extra=None):
  FIG.clf()

  matrix = m
  orig_shape = np.shape(matrix)
  # lose the channel shape in the end of orig_shape
  new_shape = orig_shape[:-1] 
  matrix = np.reshape(matrix, new_shape)
  ax = FIG.add_subplot(1,1,1)
  ax.set_aspect('equal')
  plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.gray)
  # plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.ocean)
  plt.colorbar()

  if extra != None:
    greens, reds = extra
    grn_x, grn_y, = greens
    red_x, red_y = reds
    plt.scatter(x=grn_x, y=grn_y, c='g', s=40)
    plt.scatter(x=red_x, y=red_y, c='r', s=40)
#  # put a blue dot at (10, 20)
#  plt.scatter([10], [20])
#  # put a red dot, size 40, at 2 locations:
#  plt.scatter(x=[3, 4], y=[5, 6], c='r', s=40)
#  # plt.plot()

  plt.savefig(name)
draw.py 文件源码 项目:uai2017_learning_to_acquire_information 作者: evanthebouncy 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def draw(m, name, extra=None):
  FIG.clf()

  matrix = m
  orig_shape = np.shape(matrix)
  # lose the channel shape in the end of orig_shape
  new_shape = orig_shape[:-1] 
  matrix = np.reshape(matrix, new_shape)
  ax = FIG.add_subplot(1,1,1)
  ax.set_aspect('equal')
  plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.gray)
  # plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.ocean)
  plt.colorbar()

  if extra != None:
    greens, reds = extra
    grn_x, grn_y, = greens
    red_x, red_y = reds
    plt.scatter(x=grn_x, y=grn_y, c='g', s=40)
    plt.scatter(x=red_x, y=red_y, c='r', s=40)
#  # put a blue dot at (10, 20)
#  plt.scatter([10], [20])
#  # put a red dot, size 40, at 2 locations:
#  plt.scatter(x=[3, 4], y=[5, 6], c='r', s=40)
#  # plt.plot()

  plt.savefig(name)
plot.py 文件源码 项目:POT 作者: rflamary 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def plot1D_mat(a, b, M, title=''):
    """ Plot matrix M  with the source and target 1D distribution

    Creates a subplot with the source distribution a on the left and
    target distribution b on the tot. The matrix M is shown in between.


    Parameters
    ----------
    a : np.array, shape (na,)
        Source distribution
    b : np.array, shape (nb,)
        Target distribution
    M : np.array, shape (na,nb)
        Matrix to plot
    """
    na, nb = M.shape

    gs = gridspec.GridSpec(3, 3)

    xa = np.arange(na)
    xb = np.arange(nb)

    ax1 = pl.subplot(gs[0, 1:])
    pl.plot(xb, b, 'r', label='Target distribution')
    pl.yticks(())
    pl.title(title)

    ax2 = pl.subplot(gs[1:, 0])
    pl.plot(a, xa, 'b', label='Source distribution')
    pl.gca().invert_xaxis()
    pl.gca().invert_yaxis()
    pl.xticks(())

    pl.subplot(gs[1:, 1:], sharex=ax1, sharey=ax2)
    pl.imshow(M, interpolation='nearest')
    pl.axis('off')

    pl.xlim((0, nb))
    pl.tight_layout()
    pl.subplots_adjust(wspace=0., hspace=0.2)
rasta_plp_extractor.py 文件源码 项目:speech_feature_extractor 作者: ZhihaoDU 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def rasta_plp_extractor(x, sr, plp_order=0, do_rasta=True):
    spec = log_power_spectrum_extractor(x, int(sr*0.02), int(sr*0.01), 'hamming', False)
    bark_filters = int(np.ceil(freq2bark(sr//2)))
    wts = get_fft_bark_mat(sr, int(sr*0.02), bark_filters)
    '''
    plt.figure()
    plt.subplot(211)
    plt.imshow(wts)
    plt.subplot(212)
    plt.hold(True)
    for i in range(18):
        plt.plot(wts[i, :])
    plt.show()
    '''
    bark_spec = np.matmul(wts, spec)
    if do_rasta:
        bark_spec = np.where(bark_spec == 0.0, np.finfo(float).eps, bark_spec)
        log_bark_spec = np.log(bark_spec)
        rasta_log_bark_spec = rasta_filt(log_bark_spec)
        bark_spec = np.exp(rasta_log_bark_spec)
    post_spec = postaud(bark_spec, sr/2.)
    if plp_order > 0:
        lpcas = do_lpc(post_spec, plp_order)
        # lpcas = do_lpc(spec, plp_order) # just for test
    else:
        lpcas = post_spec
    return lpcas
gplvm_vfe_examples.py 文件源码 项目:geepee 作者: thangbui 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def run_frey():
    # import dataset
    data = pods.datasets.brendan_faces()
    # Y = data['Y'][:50, :]
    Y = data['Y']
    Yn = Y - np.mean(Y, axis=0)
    Yn /= np.std(Y, axis=0)
    Y = Yn

    # inference
    print "inference ..."
    M = 30
    D = 20
    lvm = vfe.SGPLVM(Y, D, M, lik='Gaussian')
    lvm.optimise(method='L-BFGS-B', maxiter=10)
    plt.figure()
    mx, vx = lvm.get_posterior_x()
    zu = lvm.sgp_layer.zu
    plt.scatter(mx[:, 0], mx[:, 1])
    plt.plot(zu[:, 0], zu[:, 1], 'ko')

    nx = ny = 30
    x_values = np.linspace(-5, 5, nx)
    y_values = np.linspace(-5, 5, ny)
    sx = 28
    sy = 20
    canvas = np.empty((sx * ny, sy * nx))
    for i, yi in enumerate(x_values):
        for j, xi in enumerate(y_values):
            z_mu = np.array([[xi, yi]])
            x_mean, x_var = lvm.predict_f(z_mu)
            canvas[(nx - i - 1) * sx:(nx - i) * sx, j *
                   sy:(j + 1) * sy] = x_mean.reshape(sx, sy)

    plt.figure(figsize=(8, 10))
    Xi, Yi = np.meshgrid(x_values, y_values)
    plt.imshow(canvas, origin="upper", cmap="gray")
    plt.tight_layout()

    plt.show()
gplvm_aep_examples.py 文件源码 项目:geepee 作者: thangbui 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def run_frey():
    # import dataset
    data = pods.datasets.brendan_faces()
    # Y = data['Y'][:50, :]
    Y = data['Y']
    Yn = Y - np.mean(Y, axis=0)
    Yn /= np.std(Y, axis=0)
    Y = Yn

    # inference
    print "inference ..."
    M = 30
    D = 20
    lvm = aep.SGPLVM(Y, D, M, lik='Gaussian')
    # lvm.train(alpha=0.5, no_epochs=10, n_per_mb=100, lrate=0.1, fixed_params=['sn'])
    lvm.optimise(method='L-BFGS-B', alpha=0.1, maxiter=10)
    plt.figure()
    mx, vx = lvm.get_posterior_x()
    zu = lvm.sgp_layer.zu
    plt.scatter(mx[:, 0], mx[:, 1])
    plt.plot(zu[:, 0], zu[:, 1], 'ko')

    nx = ny = 30
    x_values = np.linspace(-5, 5, nx)
    y_values = np.linspace(-5, 5, ny)
    sx = 28
    sy = 20
    canvas = np.empty((sx * ny, sy * nx))
    for i, yi in enumerate(x_values):
        for j, xi in enumerate(y_values):
            z_mu = np.array([[xi, yi]])
            x_mean, x_var = lvm.predict_f(z_mu)
            canvas[(nx - i - 1) * sx:(nx - i) * sx, j *
                   sy:(j + 1) * sy] = x_mean.reshape(sx, sy)

    plt.figure(figsize=(8, 10))
    Xi, Yi = np.meshgrid(x_values, y_values)
    plt.imshow(canvas, origin="upper", cmap="gray")
    plt.tight_layout()

    plt.show()
old_camera.py 文件源码 项目:yt 作者: yt-project 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def snapshot(self, fn = None, clip_ratio = None):
        import matplotlib.pylab as pylab
        pylab.figure(2)
        self.transfer_function.show()
        pylab.draw()
        im = Camera.snapshot(self, fn, clip_ratio)
        pylab.figure(1)
        pylab.imshow(im / im.max())
        pylab.draw()
        self.frames.append(im)
segypy.py 文件源码 项目:segypy 作者: cultpenguin 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def imageSegy(Data):
    """
    imageSegy(Data)
    Image segy Data
    """
    import matplotlib.pylab as plt
    plt.imshow(Data)
    plt.title('pymat test')
    plt.grid(True)
    plt.show()

#%%
MDN_MLP.py 文件源码 项目:seqrnns 作者: x75 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def draw_heatmap(xedges, yedges, heatmap):
  extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]
  plt.figure(figsize=(8, 8))
  plt.imshow(heatmap, extent=extent)
  plt.show()
plot.py 文件源码 项目:DeepMonster 作者: olimastro 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def animate(y, ndim, cmap) :
    plt.ion()

    if ndim == 5:
        plt.figure()
        plt.show()
        for i in range(y.shape[1]) :
            print "Showing batch", i
            plt.close('all')
            for j in range(y.shape[0]) :
                plt.imshow(y[j,i], interpolation='none', cmap=cmap)
                plt.pause(0.1)

            time.sleep(1)
    else:
        for i in range(y.shape[1]) :
            print "Showing batch", i
            plt.close('all')
            for j in range(y.shape[0]) :
                plt.figure(0)
                plt.imshow(y[j,i], interpolation='none', cmap=cmap)
                plt.figure(1)
                plt.imshow(x[j,i], interpolation='none', cmap=cmap)
                plt.pause(0.2)

            time.sleep(1)
plot.py 文件源码 项目:DeepMonster 作者: olimastro 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def fancy_show(y, cmap=''):
    x = y[0]
    y = y[1]

    plt.figure(0)
    for i in range(100):
        plt.subplot(10, 10, i+1)
        plt.imshow(x[i], cmap=cmap, interpolation='none')
        plt.axis('off')
    plt.figure(1)
    for i in range(100):
        plt.subplot(10, 10, i+1)
        plt.imshow(y[i], cmap=cmap, interpolation='none')
        plt.axis('off')
    plt.show()
utils.py 文件源码 项目:TemporalConvolutionalNetworks 作者: colincsl 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def imshow_(x, **kwargs):
    if x.ndim == 2:
        plt.imshow(x, interpolation="nearest", **kwargs)
    elif x.ndim == 1:
        plt.imshow(x[:,None].T, interpolation="nearest", **kwargs)
        plt.yticks([])
    plt.axis("tight")

# ------------- Data -------------
plotting_utils.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def show_image(data, shape, order='f', cmap=cm.gray):
    """
    display an image from a 1d vector
    :param data: 1d vector containing image information
    :param shape: actual image dimensions
    :param order: 'c' or 'f'
    :param cmap: colour map, defaults to grayscale
    :return:
    """
    img = data.reshape(shape, order=order)
    plt.imshow(img, cmap=cmap)
    plt.show()
DeadLeaves.py 文件源码 项目:bnpy 作者: bnpy 项目源码 文件源码 阅读 68 收藏 0 点赞 0 评论 0
def plotImgPatchPrototypes(doShowNow=True):
    from matplotlib import pylab
    pylab.figure()
    for kk in range(K):
        pylab.subplot(2, 4, kk + 1)
        Xp = makeImgPatchPrototype(D, kk)
        pylab.imshow(Xp, interpolation='nearest')
    if doShowNow:
        pylab.show()
DeadLeaves.py 文件源码 项目:bnpy 作者: bnpy 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def plotTrueCovMats(doShowNow=True):
    from matplotlib import pylab
    pylab.figure()
    for kk in range(K):
        pylab.subplot(2, 4, kk + 1)
        pylab.imshow(Sigma[kk], interpolation='nearest')
    if doShowNow:
        pylab.show()
SpeakerDiar.py 文件源码 项目:bnpy 作者: bnpy 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def plotBlackWhiteStateSeqForMeeting(meetingNum=1, badUIDs=[-1, -2],
                                     **kwargs):
    ''' Make plot like in Fig. 3 of AOAS paper
    '''
    from matplotlib import pylab

    Data = get_data(meetingNum=args.meetingNum)
    Z = np.asarray(Data.TrueParams['Z'], dtype=np.int32)

    uLabels = np.unique(Z)
    uLabels = np.asarray([u for u in uLabels if u not in badUIDs])
    sizes = np.asarray([np.sum(Z == u) for u in uLabels])
    sortIDs = np.argsort(-1 * sizes)
    Zim = np.zeros((10, Z.size))
    for rankID, uID in enumerate(uLabels[sortIDs]):
        Zim[1 + rankID, Z == uID] = 1
        size = sizes[sortIDs[rankID]]
        frac = size / float(Z.size)
        print 'state %3d: %5d tsteps (%.3f)' % (rankID + 1, size, frac)

    for uID in badUIDs:
        size = np.sum(Z == uID)
        frac = size / float(Z.size)
        print 'state %3d: %5d tsteps (%.3f)' % (uID, size, frac)

    pylab.imshow(1 - Zim,
                 interpolation='nearest',
                 aspect=Zim.shape[1] / float(Zim.shape[0]) / 3,
                 cmap='bone',
                 vmin=0,
                 vmax=1,
                 origin='lower')
    pylab.show()


问题


面经


文章

微信
公众号

扫码关注公众号