python类scatter()的实例源码

volcanoStats.py 文件源码 项目:TSS_detection 作者: ueser 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def plot_volcano(logFC,p_val,sample_name,saveName,logFC_thresh):
    fig=pl.figure()
    ## To plot and save
    pl.scatter(logFC[(p_val>0.05)|(abs(logFC)<logFC_thresh)],-np.log10(p_val[(p_val>0.05)|(abs(logFC)<logFC_thresh)]),color='blue',alpha=0.5);
    pl.scatter(logFC[(p_val<0.05)&(abs(logFC)>logFC_thresh)],-np.log10(p_val[(p_val<0.05)&(abs(logFC)>logFC_thresh)]),color='red');
    pl.hlines(-np.log10(0.05),min(logFC),max(logFC))
    pl.vlines(-logFC_thresh,min(-np.log10(p_val)),max(-np.log10(p_val)))
    pl.vlines(logFC_thresh,min(-np.log10(p_val)),max(-np.log10(p_val)))
    pl.xlim(-3,3)
    pl.xlabel('Log Fold Change')
    pl.ylabel('-log10(p-value)')
    pl.savefig(saveName)
    pl.close(fig)


# def plot_histograms(df_peaks,pntr_list):
#
#     for pntr in pntr_list:
#         colName =pntr[2]+'_Intragenic_position'
#         pl.hist(df_peaks[colName])
#         pl.xlabel(colName)
#         pl.ylabel()
#         pl.show()
test_plot_error.py 文件源码 项目:prototype 作者: chutsu 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_plot_error_ellipse(self):
        # Generate random data
        x = np.random.normal(0, 1, 300)
        s = np.array([2.0, 2.0])
        y1 = np.random.normal(s[0] * x)
        y2 = np.random.normal(s[1] * x)
        data = np.array([y1, y2])

        # Calculate covariance and plot error ellipse
        cov = np.cov(data)
        plot_error_ellipse([0.0, 0.0], cov)

        debug = False
        if debug:
            plt.scatter(data[0, :], data[1, :])
            plt.xlim([-8, 8])
            plt.ylim([-8, 8])
            plt.show()
        plt.clf()
code.py 文件源码 项目:COMSW4721_MachineLearning_HomeWork 作者: aarshayj 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def gp_partd(Xtrain,ytrain,Xtest,ytest):
    gp = gaussian_process(Xtrain[:,3],ytrain,Xtrain[:,3],ytrain)


    gp.init_kernel_matrices(b=5,var=2)
    gp.predict_test()

    x = np.asarray(Xtrain[:,3]).flatten()
    xsortind = np.argsort(x)
    y1 = np.asarray(ytrain).flatten()
    y2 = np.asarray(gp.test_predictions).flatten()
    plt.figure()
    plt.scatter(x[xsortind],y1[xsortind])
    plt.plot(x[xsortind],y2[xsortind],'b-')
    plt.xlabel('Car Weight (Dimension 4)')
    plt.ylabel('Outcome')
    plt.title('Visualizing model through single dimension')
    plt.savefig('hw3_gaussian_dim4_viz')
    plt.show()
word2vec_cbow.py 文件源码 项目:DeepLearning 作者: STHSF 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def plot(embeddings, labels):
    assert embeddings.shape[0] >= len(labels), 'More labels than embeddings'
    pylab.figure(figsize=(15, 15))  # in inches
    for i, label in enumerate(labels):
        x, y = embeddings[i, :]
        pylab.scatter(x, y)
        pylab.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points',
                       ha='right', va='bottom')
    pylab.show()
draw.py 文件源码 项目:uai2017_learning_to_acquire_information 作者: evanthebouncy 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def draw(m, name, extra=None):
  FIG.clf()

  matrix = m
  orig_shape = np.shape(matrix)
  # lose the channel shape in the end of orig_shape
  new_shape = orig_shape[:-1] 
  matrix = np.reshape(matrix, new_shape)
  ax = FIG.add_subplot(1,1,1)
  ax.set_aspect('equal')
  plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.gray)
  # plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.ocean)
  plt.colorbar()

  if extra != None:
    greens, reds = extra
    grn_x, grn_y, = greens
    red_x, red_y = reds
    plt.scatter(x=grn_x, y=grn_y, c='g', s=40)
    plt.scatter(x=red_x, y=red_y, c='r', s=40)
#  # put a blue dot at (10, 20)
#  plt.scatter([10], [20])
#  # put a red dot, size 40, at 2 locations:
#  plt.scatter(x=[3, 4], y=[5, 6], c='r', s=40)
#  # plt.plot()

  plt.savefig(name)
draw.py 文件源码 项目:uai2017_learning_to_acquire_information 作者: evanthebouncy 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def draw_annotate(x_cords, y_cords, anns, name):
  FIG.clf()
  y = x_cords
  z = y_cords
  n = anns
  fig = FIG
  ax = fig.add_subplot(1,1,1)
  ax.set_xlim([0,L])
  ax.set_ylim([0,L])
  ax.set_ylim(ax.get_ylim()[::-1])
  ax.scatter(z, y)

  for i, txt in enumerate(n):
    ax.annotate(txt, (z[i],y[i]))
  fig.savefig(name)
draw.py 文件源码 项目:uai2017_learning_to_acquire_information 作者: evanthebouncy 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def draw(m, name, extra=None):
  FIG.clf()

  matrix = m
  orig_shape = np.shape(matrix)
  # lose the channel shape in the end of orig_shape
  new_shape = orig_shape[:-1] 
  matrix = np.reshape(matrix, new_shape)
  ax = FIG.add_subplot(1,1,1)
  ax.set_aspect('equal')
  plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.gray)
  # plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.ocean)
  plt.colorbar()

  if extra != None:
    greens, reds = extra
    grn_x, grn_y, = greens
    red_x, red_y = reds
    plt.scatter(x=grn_x, y=grn_y, c='g', s=40)
    plt.scatter(x=red_x, y=red_y, c='r', s=40)
#  # put a blue dot at (10, 20)
#  plt.scatter([10], [20])
#  # put a red dot, size 40, at 2 locations:
#  plt.scatter(x=[3, 4], y=[5, 6], c='r', s=40)
#  # plt.plot()

  plt.savefig(name)
draw.py 文件源码 项目:uai2017_learning_to_acquire_information 作者: evanthebouncy 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def draw_annotate(x_cords, y_cords, anns, name):
  FIG.clf()
  y = x_cords
  z = y_cords
  n = anns
  fig = FIG
  ax = fig.add_subplot(1,1,1)
  ax.set_xlim([0,L])
  ax.set_ylim([0,L])
  ax.set_ylim(ax.get_ylim()[::-1])
  ax.scatter(z, y)

  for i, txt in enumerate(n):
    ax.annotate(txt, (z[i],y[i]))
  fig.savefig(name)
draw.py 文件源码 项目:uai2017_learning_to_acquire_information 作者: evanthebouncy 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def draw(m, name, extra=None):
  FIG.clf()

  matrix = m
  orig_shape = np.shape(matrix)
  # lose the channel shape in the end of orig_shape
  new_shape = orig_shape[:-1] 
  matrix = np.reshape(matrix, new_shape)
  ax = FIG.add_subplot(1,1,1)
  ax.set_aspect('equal')
  plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.gray)
  # plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.ocean)
  plt.colorbar()

  if extra != None:
    greens, reds = extra
    grn_x, grn_y, = greens
    red_x, red_y = reds
    plt.scatter(x=grn_x, y=grn_y, c='g', s=40)
    plt.scatter(x=red_x, y=red_y, c='r', s=40)
#  # put a blue dot at (10, 20)
#  plt.scatter([10], [20])
#  # put a red dot, size 40, at 2 locations:
#  plt.scatter(x=[3, 4], y=[5, 6], c='r', s=40)
#  # plt.plot()

  plt.savefig(name)
gplvm_vfe_examples.py 文件源码 项目:geepee 作者: thangbui 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def run_cluster_MM(nat_param=True):
    import GPy
    # create dataset
    print "creating dataset..."
    N = 100
    k1 = GPy.kern.RBF(5, variance=1, lengthscale=1. /
                      np.random.dirichlet(np.r_[10, 10, 10, 0.1, 0.1]), ARD=True)
    k2 = GPy.kern.RBF(5, variance=1, lengthscale=1. /
                      np.random.dirichlet(np.r_[10, 0.1, 10, 0.1, 10]), ARD=True)
    k3 = GPy.kern.RBF(5, variance=1, lengthscale=1. /
                      np.random.dirichlet(np.r_[0.1, 0.1, 10, 10, 10]), ARD=True)
    X = np.random.normal(0, 1, (N, 5))
    A = np.random.multivariate_normal(np.zeros(N), k1.K(X), 10).T
    B = np.random.multivariate_normal(np.zeros(N), k2.K(X), 10).T
    C = np.random.multivariate_normal(np.zeros(N), k3.K(X), 10).T

    Y = np.vstack((A, B, C))
    labels = np.hstack((np.zeros(A.shape[0]), np.ones(
        B.shape[0]), np.ones(C.shape[0]) * 2))

    # inference
    np.random.seed(42)
    print "inference ..."
    M = 30
    D = 5
    lvm = vfe.SGPLVM(Y, D, M, lik='Gaussian', nat_param=nat_param)
    lvm.optimise(method='L-BFGS-B', maxiter=20)
    # lvm.optimise(method='adam', adam_lr=0.05, maxiter=2000)

    ls = np.exp(lvm.sgp_layer.ls)
    print ls
    inds = np.argsort(ls)
    plt.figure()
    mx, vx = lvm.get_posterior_x()
    plt.scatter(mx[:, inds[0]], mx[:, inds[1]], c=labels)
    zu = lvm.sgp_layer.zu
    plt.plot(zu[:, inds[0]], zu[:, inds[1]], 'ko')
    # plt.show()
    plt.savefig('/tmp/gplvm_cluster_MM.pdf')
gplvm_vfe_examples.py 文件源码 项目:geepee 作者: thangbui 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def run_cluster_MC():
    import GPy
    # create dataset
    print "creating dataset..."
    N = 100
    k1 = GPy.kern.RBF(5, variance=1, lengthscale=1. /
                      np.random.dirichlet(np.r_[10, 10, 10, 0.1, 0.1]), ARD=True)
    k2 = GPy.kern.RBF(5, variance=1, lengthscale=1. /
                      np.random.dirichlet(np.r_[10, 0.1, 10, 0.1, 10]), ARD=True)
    k3 = GPy.kern.RBF(5, variance=1, lengthscale=1. /
                      np.random.dirichlet(np.r_[0.1, 0.1, 10, 10, 10]), ARD=True)
    X = np.random.normal(0, 1, (N, 5))
    A = np.random.multivariate_normal(np.zeros(N), k1.K(X), 10).T
    B = np.random.multivariate_normal(np.zeros(N), k2.K(X), 10).T
    C = np.random.multivariate_normal(np.zeros(N), k3.K(X), 10).T

    Y = np.vstack((A, B, C))
    labels = np.hstack((np.zeros(A.shape[0]), np.ones(
        B.shape[0]), np.ones(C.shape[0]) * 2))

    # inference
    np.random.seed(42)
    print "inference ..."
    M = 30
    D = 5
    alpha = 0.5
    lvm = vfe.SGPLVM(Y, D, M, lik='Gaussian')
    lvm.optimise(method='adam', adam_lr=0.05, maxiter=2000, prop_mode=config.PROP_MC)

    ls = np.exp(lvm.sgp_layer.ls)
    print ls
    inds = np.argsort(ls)
    plt.figure()
    mx, vx = lvm.get_posterior_x()
    plt.scatter(mx[:, inds[0]], mx[:, inds[1]], c=labels)
    zu = lvm.sgp_layer.zu
    plt.plot(zu[:, inds[0]], zu[:, inds[1]], 'ko')
    # plt.show()
    plt.savefig('/tmp/gplvm_cluster_MC.pdf')
gplvm_vfe_examples.py 文件源码 项目:geepee 作者: thangbui 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def run_frey():
    # import dataset
    data = pods.datasets.brendan_faces()
    # Y = data['Y'][:50, :]
    Y = data['Y']
    Yn = Y - np.mean(Y, axis=0)
    Yn /= np.std(Y, axis=0)
    Y = Yn

    # inference
    print "inference ..."
    M = 30
    D = 20
    lvm = vfe.SGPLVM(Y, D, M, lik='Gaussian')
    lvm.optimise(method='L-BFGS-B', maxiter=10)
    plt.figure()
    mx, vx = lvm.get_posterior_x()
    zu = lvm.sgp_layer.zu
    plt.scatter(mx[:, 0], mx[:, 1])
    plt.plot(zu[:, 0], zu[:, 1], 'ko')

    nx = ny = 30
    x_values = np.linspace(-5, 5, nx)
    y_values = np.linspace(-5, 5, ny)
    sx = 28
    sy = 20
    canvas = np.empty((sx * ny, sy * nx))
    for i, yi in enumerate(x_values):
        for j, xi in enumerate(y_values):
            z_mu = np.array([[xi, yi]])
            x_mean, x_var = lvm.predict_f(z_mu)
            canvas[(nx - i - 1) * sx:(nx - i) * sx, j *
                   sy:(j + 1) * sy] = x_mean.reshape(sx, sy)

    plt.figure(figsize=(8, 10))
    Xi, Yi = np.meshgrid(x_values, y_values)
    plt.imshow(canvas, origin="upper", cmap="gray")
    plt.tight_layout()

    plt.show()
gplvm_aep_examples.py 文件源码 项目:geepee 作者: thangbui 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def run_cluster_MC():
    import GPy
    # create dataset
    print "creating dataset..."
    N = 100
    k1 = GPy.kern.RBF(5, variance=1, lengthscale=1. /
                      np.random.dirichlet(np.r_[10, 10, 10, 0.1, 0.1]), ARD=True)
    k2 = GPy.kern.RBF(5, variance=1, lengthscale=1. /
                      np.random.dirichlet(np.r_[10, 0.1, 10, 0.1, 10]), ARD=True)
    k3 = GPy.kern.RBF(5, variance=1, lengthscale=1. /
                      np.random.dirichlet(np.r_[0.1, 0.1, 10, 10, 10]), ARD=True)
    X = np.random.normal(0, 1, (N, 5))
    A = np.random.multivariate_normal(np.zeros(N), k1.K(X), 10).T
    B = np.random.multivariate_normal(np.zeros(N), k2.K(X), 10).T
    C = np.random.multivariate_normal(np.zeros(N), k3.K(X), 10).T

    Y = np.vstack((A, B, C))
    labels = np.hstack((np.zeros(A.shape[0]), np.ones(
        B.shape[0]), np.ones(C.shape[0]) * 2))

    # inference
    print "inference ..."
    M = 30
    D = 5
    alpha = 0.5
    lvm = aep.SGPLVM(Y, D, M, lik='Gaussian')
    lvm.optimise(method='adam', adam_lr=0.05, maxiter=2000,
                 alpha=alpha, prop_mode=config.PROP_MC)

    ls = np.exp(lvm.sgp_layer.ls)
    print ls
    inds = np.argsort(ls)
    plt.figure()
    mx, vx = lvm.get_posterior_x()
    plt.scatter(mx[:, inds[0]], mx[:, inds[1]], c=labels)
    zu = lvm.sgp_layer.zu
    # plt.plot(zu[:, inds[0]], zu[:, inds[1]], 'ko')
    # plt.show()
    plt.savefig('/tmp/gplvm_cluster.pdf')
gplvm_aep_examples.py 文件源码 项目:geepee 作者: thangbui 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def run_frey():
    # import dataset
    data = pods.datasets.brendan_faces()
    # Y = data['Y'][:50, :]
    Y = data['Y']
    Yn = Y - np.mean(Y, axis=0)
    Yn /= np.std(Y, axis=0)
    Y = Yn

    # inference
    print "inference ..."
    M = 30
    D = 20
    lvm = aep.SGPLVM(Y, D, M, lik='Gaussian')
    # lvm.train(alpha=0.5, no_epochs=10, n_per_mb=100, lrate=0.1, fixed_params=['sn'])
    lvm.optimise(method='L-BFGS-B', alpha=0.1, maxiter=10)
    plt.figure()
    mx, vx = lvm.get_posterior_x()
    zu = lvm.sgp_layer.zu
    plt.scatter(mx[:, 0], mx[:, 1])
    plt.plot(zu[:, 0], zu[:, 1], 'ko')

    nx = ny = 30
    x_values = np.linspace(-5, 5, nx)
    y_values = np.linspace(-5, 5, ny)
    sx = 28
    sy = 20
    canvas = np.empty((sx * ny, sy * nx))
    for i, yi in enumerate(x_values):
        for j, xi in enumerate(y_values):
            z_mu = np.array([[xi, yi]])
            x_mean, x_var = lvm.predict_f(z_mu)
            canvas[(nx - i - 1) * sx:(nx - i) * sx, j *
                   sy:(j + 1) * sy] = x_mean.reshape(sx, sy)

    plt.figure(figsize=(8, 10))
    Xi, Yi = np.meshgrid(x_values, y_values)
    plt.imshow(canvas, origin="upper", cmap="gray")
    plt.tight_layout()

    plt.show()
assignment_5.py 文件源码 项目:udacity 作者: kensk8er 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def plot(embeddings, labels):
    assert embeddings.shape[0] >= len(labels), 'More labels than embeddings'

    pylab.figure(figsize=(15, 15))  # in inches

    for i, label in enumerate(labels):
        x, y = embeddings[i, :]
        pylab.scatter(x, y)
        pylab.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom')

    pylab.show()
test_kf.py 文件源码 项目:prototype 作者: chutsu 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def plot_trajectory(state_true, state_estimated):
    plt.plot(state_true[:, 0], state_true[:, 2], color="red")
    plt.scatter(state_estimated[:, 0].tolist()[::10],
                state_estimated[:, 2].tolist()[::10],
                marker="o",
                color="blue")
test_ransac.py 文件源码 项目:prototype 作者: chutsu 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_compute_inliers(self):
        sample = self.ransac.sample(self.data)
        dist = self.ransac.compute_distance(sample, self.data)
        self.ransac.compute_inliers(dist)

    # def test_optimize(self):
    #     debug = False
    #
    #     for i in range(10):
    #         m_pred, c_pred, mask = self.ransac.optimize(self.data)
    #         if debug:
    #             print("m_true: ", self.m_true)
    #             print("m_pred: ", m_pred)
    #             print("c_true: ", self.c_true)
    #             print("c_pred: ", c_pred)
    #
    #         self.assertTrue(abs(m_pred - self.m_true) < 0.5)
    #         self.assertTrue(abs(c_pred - self.c_true) < 0.5)
    #
    #         # Plot RANSAC optimized result
    #         debug = False
    #         if debug:
    #             x = np.linspace(0.0, 10.0, num=100)
    #             y = m_pred * x + c_pred
    #             plt.scatter(self.data[0, :], self.data[1, :])
    #             plt.plot(x, y)
    #             plt.show()
word2vec.py 文件源码 项目:itunes 作者: kaminem64 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def plot(embeddings, labels):
  assert embeddings.shape[0] >= len(labels), 'More labels than embeddings'
  pylab.figure(figsize=(15,15))  # in inches
  for i, label in enumerate(labels):
    x, y = embeddings[i,:]
    pylab.scatter(x, y)
    pylab.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points',
                   ha='right', va='bottom')
  pylab.show()
demo_mi.py 文件源码 项目:Building-Machine-Learning-Systems-With-Python-Second-Edition 作者: PacktPublishing 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _plot_mi_func(x, y):

    mi = mutual_info(x, y)
    title = "NI($X_1$, $X_2$) = %.3f" % mi
    pylab.scatter(x, y)
    pylab.title(title)
    pylab.xlabel("$X_1$")
    pylab.ylabel("$X_2$")
demo_corr.py 文件源码 项目:Building-Machine-Learning-Systems-With-Python-Second-Edition 作者: PacktPublishing 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def _plot_correlation_func(x, y):

    r, p = pearsonr(x, y)
    title = "Cor($X_1$, $X_2$) = %.3f" % r
    pylab.scatter(x, y)
    pylab.title(title)
    pylab.xlabel("$X_1$")
    pylab.ylabel("$X_2$")

    f1 = scipy.poly1d(scipy.polyfit(x, y, 1))
    pylab.plot(x, f1(x), "r--", linewidth=2)
    # pylab.xticks([w*7*24 for w in [0,1,2,3,4]], ['week %i'%(w+1) for w in
    # [0,1,2,3,4]])
5_word2vec.py 文件源码 项目:udacity-deep-learning 作者: hankcs 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def plot(embeddings, labels):
    assert embeddings.shape[0] >= len(labels), 'More labels than embeddings'
    pylab.figure(figsize=(15, 15))  # in inches
    for i, label in enumerate(labels):
        x, y = embeddings[i, :]
        pylab.scatter(x, y)
        pylab.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points',
                       ha='right', va='bottom')
    pylab.show()
5_word2vec.py 文件源码 项目:udacity-deep-learning 作者: hankcs 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def plot(embeddings, labels):
    assert embeddings.shape[0] >= len(labels), 'More labels than embeddings'
    pylab.figure(figsize=(15, 15))  # in inches
    for i, label in enumerate(labels):
        x, y = embeddings[i, :]
        pylab.scatter(x, y)
        pylab.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points',
                       ha='right', va='bottom')
    pylab.show()
5_word2vec.py 文件源码 项目:udacity-deep-learning 作者: runhani 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def plot(embeddings, labels):
  assert embeddings.shape[0] >= len(labels), 'More labels than embeddings'
  pylab.figure(figsize=(15,15))  # in inches
  for i, label in enumerate(labels):
    x, y = embeddings[i,:]
    pylab.scatter(x, y)
    pylab.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points',
                   ha='right', va='bottom')
  pylab.show()
cbow.py 文件源码 项目:tensor_flow 作者: eecrazy 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def plot(embeddings, labels):
  assert embeddings.shape[0] >= len(labels), 'More labels than embeddings'
  pylab.figure(figsize=(15,15))  # in inches
  for i, label in enumerate(labels):
    x, y = embeddings[i,:]
    pylab.scatter(x, y)
    pylab.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points',
                   ha='right', va='bottom')
  pylab.show()
skip_gram.py 文件源码 项目:tensor_flow 作者: eecrazy 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def plot(embeddings, labels):
  assert embeddings.shape[0] >= len(labels), 'More labels than embeddings'
  pylab.figure(figsize=(15,15))  # in inches
  for i, label in enumerate(labels):
    x, y = embeddings[i,:]
    pylab.scatter(x, y)
    pylab.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points',
                   ha='right', va='bottom')
  pylab.show()
draw_feature.py 文件源码 项目:flask-image-retrieval 作者: zzningxp 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def draw(name, feature4096):
    plt.figure(name)
    feature4096 = feature4096.reshape(64,64)
    for i, x in enumerate(feature4096):
        for j, y in enumerate(x):
            #if y <= 0:
            #    print '   ',
            #else:
            #    print '%3.1f'%y,
            plt.scatter([j],[i], s=[y*1000])
        #print
    plt.axis([-1, 65, -1, 65])
    plt.show()
vis_hyperspectral.py 文件源码 项目:hyperspectral-framework 作者: mihailoobrenovic 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def vis_data(data,classes):

    X_embedded = TSNE(n_components=2, perplexity=40, verbose=2).fit_transform(data)
    plt.figure()
    colors = cm.rainbow(np.linspace(0, 1, 17))
    for i in range(17):
        ind = np.where(classes==i)
        plt.scatter(X_embedded[ind,0],X_embedded[ind,1],color = colors[i],marker ='x',label = i)
    plt.legend()

# Raw data
logRegres.py 文件源码 项目:My_MachineLeaning_way 作者: salamer 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def plotBestFit(weights):
    import matplotlib.pylab as plt
    import seaborn as sns

    dataMat,labelMat=loadDataSet()
    dataArr=array(dataMat)
    n=shape(dataArr)[0]
    xcord1=[]
    ycord1=[]
    xcord2=[]
    ycord2=[]

    for i in range(n):
        if int(labelMat[i])==1:
            xcord1.append(dataArr[i,1])
            ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1])
            ycord2.append(dataArr[i,2])

#    fig=plt.figure

    plt.scatter(xcord1,ycord1,s=30,c="red",marker="s",label="X1")
    plt.scatter(xcord2,ycord2,s=30,c="green",label="X2")
    x=arange(-3.0,3.0,0.1)
    y=(-float(weights[0])-float(weights[1])*x)/float(weights[2])
    plt.plot(x,y,c="purple",label="fitted line")
    plt.legend()
    plt.xlabel("X1")
    plt.ylabel("X2")
    plt.show()
cluster.py 文件源码 项目:My_MachineLeaning_way 作者: salamer 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def draw_pic(data_list_set):
    for i in range(len(data_list_set)):
        parse_x=[]
        parse_y=[]
        for j in range(len(data_list_set[i])):
            parse_x.append(data_list_set[i][j].x)
            parse_y.append(data_list_set[i][j].y)

        plt.scatter(parse_x,parse_y,c=numpy.random.rand(3,1),alpha=0.65,label="Team:"+str(i),s=40)

    plt.legend()
    plt.title("The Result From The Cluster")

    plt.show()
word2vec-skipgram.py 文件源码 项目:TensorFlowHub 作者: MJFND 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def plot(embeddings, labels):
  assert embeddings.shape[0] >= len(labels), 'More labels than embeddings'
  pylab.figure(figsize=(15,15))  # in inches
  for i, label in enumerate(labels):
    x, y = embeddings[i,:]
    pylab.scatter(x, y)
    pylab.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points',
                   ha='right', va='bottom')
  pylab.show()


问题


面经


文章

微信
公众号

扫码关注公众号