python类legend()的实例源码

plots.py 文件源码 项目:nmmn 作者: rsnemmen 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def threehistsx(x1,x2,x3,x1leg='$x_1$',x2leg='$x_2$',x3leg='$x_3$',fig=1,fontsize=12,bins1=10,bins2=10,bins3=10):
    """
Script that pretty-plots three histograms of quantities x1, x2 and x3.

Arguments:
:param x1,x2,x3: arrays with data to be plotted
:param x1leg, x2leg, x3leg: legends for each histogram  
:param fig: which plot window should I use?

Example:
x1=Lbol(AD), x2=Lbol(JD), x3=Lbol(EHF10)

>>> threehists(x1,x2,x3,38,44,'AD','JD','EHF10','$\log L_{\\rm bol}$ (erg s$^{-1}$)')

Inspired by http://www.scipy.org/Cookbook/Matplotlib/Multiple_Subplots_with_One_Axis_Label.
    """
    pylab.rcParams.update({'font.size': fontsize})
    pylab.figure(fig)
    pylab.clf()

    pylab.subplot(3,1,1)
    pylab.hist(x1,label=x1leg,color='b',bins=bins1)
    pylab.legend(loc='best',frameon=False)

    pylab.subplot(3,1,2)
    pylab.hist(x2,label=x2leg,color='r',bins=bins2)
    pylab.legend(loc='best',frameon=False)

    pylab.subplot(3,1,3)
    pylab.hist(x3,label=x3leg,color='y',bins=bins3)
    pylab.legend(loc='best',frameon=False)

    pylab.minorticks_on()
    pylab.subplots_adjust(hspace=0.15)
    pylab.draw()
    pylab.show()
texttiling.py 文件源码 项目:Price-Comparator 作者: Thejas-1 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def demo(text=None):
    from nltk.corpus import brown
    from matplotlib import pylab
    tt = TextTilingTokenizer(demo_mode=True)
    if text is None: text = brown.raw()[:10000]
    s, ss, d, b = tt.tokenize(text)
    pylab.xlabel("Sentence Gap index")
    pylab.ylabel("Gap Scores")
    pylab.plot(range(len(s)), s, label="Gap Scores")
    pylab.plot(range(len(ss)), ss, label="Smoothed Gap scores")
    pylab.plot(range(len(d)), d, label="Depth scores")
    pylab.stem(range(len(b)), b)
    pylab.legend()
    pylab.show()
test_msckf.py 文件源码 项目:prototype 作者: chutsu 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def plot_position(self, pos_true, pos_est, cam_states):
        N = pos_est.shape[1]
        pos_true = pos_true[:, :N]
        pos_est = pos_est[:, :N]

        # Figure
        plt.figure()
        plt.suptitle("Position")

        # Ground truth
        plt.plot(pos_true[0, :], pos_true[1, :],
                 color="red", label="Grouth truth")
                 # color="red", marker="x", label="Grouth truth")

        # Estimated
        plt.plot(pos_est[0, :], pos_est[1, :],
                 color="blue", label="Estimated")
                 # color="blue", marker="o", label="Estimated")

        # Sliding window
        cam_pos = []
        for cam_state in cam_states:
            cam_pos.append(cam_state.p_G)
        cam_pos = np.array(cam_pos).reshape((len(cam_pos), 3)).T
        plt.plot(cam_pos[0, :], cam_pos[1, :],
                 color="green", label="Camera Poses")
                 # color="green", marker="o", label="Camera Poses")

        # Plot labels and legends
        plt.xlabel("East (m)")
        plt.ylabel("North (m)")
        plt.axis("equal")
        plt.legend(loc=0)
test_msckf.py 文件源码 项目:prototype 作者: chutsu 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plot_velocity(self, timestamps, vel_true, vel_est):
        N = vel_est.shape[1]
        t = timestamps[:N]
        vel_true = vel_true[:, :N]
        vel_est = vel_est[:, :N]

        # Figure
        plt.figure()
        plt.suptitle("Velocity")

        # X axis
        plt.subplot(311)
        plt.plot(t, vel_true[0, :], color="red", label="Ground_truth")
        plt.plot(t, vel_est[0, :], color="blue", label="Estimate")

        plt.title("x-axis")
        plt.xlabel("Date Time")
        plt.ylabel("ms^-1")
        plt.legend(loc=0)

        # Y axis
        plt.subplot(312)
        plt.plot(t, vel_true[1, :], color="red", label="Ground_truth")
        plt.plot(t, vel_est[1, :], color="blue", label="Estimate")

        plt.title("y-axis")
        plt.xlabel("Date Time")
        plt.ylabel("ms^-1")
        plt.legend(loc=0)

        # Z axis
        plt.subplot(313)
        plt.plot(t, vel_true[2, :], color="red", label="Ground_truth")
        plt.plot(t, vel_est[2, :], color="blue", label="Estimate")

        plt.title("z-axis")
        plt.xlabel("Date Time")
        plt.ylabel("ms^-1")
        plt.legend(loc=0)
test_msckf.py 文件源码 项目:prototype 作者: chutsu 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def plot_attitude(self, timestamps, att_true, att_est):
        # Setup
        N = att_est.shape[1]
        t = timestamps[:N]
        att_true = att_true[:, :N]
        att_est = att_est[:, :N]

        # Figure
        plt.figure()
        plt.suptitle("Attitude")

        # X axis
        plt.subplot(311)
        plt.plot(t, att_true[0, :], color="red", label="Ground_truth")
        plt.plot(t, att_est[0, :], color="blue", label="Estimate")

        plt.title("x-axis")
        plt.legend(loc=0)
        plt.xlabel("Date Time")
        plt.ylabel("rad s^-1")

        # Y axis
        plt.subplot(312)
        plt.plot(t, att_true[1, :], color="red", label="Ground_truth")
        plt.plot(t, att_est[1, :], color="blue", label="Estimate")

        plt.title("y-axis")
        plt.legend(loc=0)
        plt.xlabel("Date Time")
        plt.ylabel("rad s^-1")

        # Z axis
        plt.subplot(313)
        plt.plot(t, att_true[2, :], color="red", label="Ground_truth")
        plt.plot(t, att_est[2, :], color="blue", label="Estimate")

        plt.title("z-axis")
        plt.legend(loc=0)
        plt.xlabel("Date Time")
        plt.ylabel("rad s^-1")
test_imu_state.py 文件源码 项目:prototype 作者: chutsu 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def plot_velocity(self, timestamps, vel_true, vel_est):
        N = vel_est.shape[1]
        t = timestamps[:N]
        vel_true = vel_true[:, :N]
        vel_est = vel_est[:, :N]

        # Figure
        plt.figure()
        plt.suptitle("Velocity")

        # X axis
        plt.subplot(311)
        plt.plot(t, vel_true[0, :], color="red", label="Ground_truth")
        plt.plot(t, vel_est[0, :], color="blue", label="Estimate")

        plt.title("x-axis")
        plt.xlabel("Date Time")
        plt.ylabel("ms^-1")
        plt.legend(loc=0)

        # Y axis
        plt.subplot(312)
        plt.plot(t, vel_true[1, :], color="red", label="Ground_truth")
        plt.plot(t, vel_est[1, :], color="blue", label="Estimate")

        plt.title("y-axis")
        plt.xlabel("Date Time")
        plt.ylabel("ms^-1")
        plt.legend(loc=0)

        # Z axis
        plt.subplot(313)
        plt.plot(t, vel_true[2, :], color="red", label="Ground_truth")
        plt.plot(t, vel_est[2, :], color="blue", label="Estimate")

        plt.title("z-axis")
        plt.xlabel("Date Time")
        plt.ylabel("ms^-1")
        plt.legend(loc=0)
test_dataset.py 文件源码 项目:prototype 作者: chutsu 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_step(self):
        # Step
        a_B_history = self.dataset.a_B
        w_B_history = self.dataset.w_B

        for i in range(30):
            (a_B, w_B) = self.dataset.step()
            a_B_history = np.hstack((a_B_history, a_B))
            w_B_history = np.hstack((w_B_history, w_B))

        # Plot
        debug = False
        # debug = True
        if debug:
            plt.subplot(211)
            plt.plot(self.dataset.time_true, a_B_history[0, :], label="ax")
            plt.plot(self.dataset.time_true, a_B_history[1, :], label="ay")
            plt.plot(self.dataset.time_true, a_B_history[2, :], label="az")
            plt.legend(loc=0)

            plt.subplot(212)
            plt.plot(self.dataset.time_true, w_B_history[0, :], label="wx")
            plt.plot(self.dataset.time_true, w_B_history[1, :], label="wy")
            plt.plot(self.dataset.time_true, w_B_history[2, :], label="wz")
            plt.legend(loc=0)
            plt.show()
utils.py 文件源码 项目:Building-Machine-Learning-Systems-With-Python-Second-Edition 作者: PacktPublishing 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plot_bias_variance(data_sizes, train_errors, test_errors, name):
    pylab.clf()
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('Data set size')
    pylab.ylabel('Error')
    pylab.title("Bias-Variance for '%s'" % name)
    pylab.plot(
        data_sizes, train_errors, "-", data_sizes, test_errors, "--", lw=1)
    pylab.legend(["train error", "test error"], loc="upper right")
    pylab.grid()
    pylab.savefig(os.path.join(CHART_DIR, "bv_" + name + ".png"))
utils.py 文件源码 项目:Building-Machine-Learning-Systems-With-Python-Second-Edition 作者: PacktPublishing 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plot_roc(auc_score, name, fpr, tpr):
    pylab.figure(num=None, figsize=(6, 5))
    pylab.plot([0, 1], [0, 1], 'k--')
    pylab.xlim([0.0, 1.0])
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('False Positive Rate')
    pylab.ylabel('True Positive Rate')
    pylab.title('Receiver operating characteristic (AUC=%0.2f)\n%s' % (
        auc_score, name))
    pylab.legend(loc="lower right")
    pylab.grid(True, linestyle='-', color='0.75')
    pylab.fill_between(tpr, fpr, alpha=0.5)
    pylab.plot(fpr, tpr, lw=1)
    pylab.savefig(
        os.path.join(CHART_DIR, "roc_" + name.replace(" ", "_") + ".png"))
utils.py 文件源码 项目:Building-Machine-Learning-Systems-With-Python-Second-Edition 作者: PacktPublishing 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plot_bias_variance(data_sizes, train_errors, test_errors, name, title):
    pylab.figure(num=None, figsize=(6, 5))
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('Data set size')
    pylab.ylabel('Error')
    pylab.title("Bias-Variance for '%s'" % name)
    pylab.plot(
        data_sizes, test_errors, "--", data_sizes, train_errors, "b-", lw=1)
    pylab.legend(["test error", "train error"], loc="upper right")
    pylab.grid(True, linestyle='-', color='0.75')
    pylab.savefig(
        os.path.join(CHART_DIR, "bv_" + name.replace(" ", "_") + ".png"), bbox_inches="tight")
utils.py 文件源码 项目:Building-Machine-Learning-Systems-With-Python-Second-Edition 作者: PacktPublishing 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def plot_k_complexity(ks, train_errors, test_errors):
    pylab.figure(num=None, figsize=(6, 5))
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('k')
    pylab.ylabel('Error')
    pylab.title('Errors for for different values of $k$')
    pylab.plot(
        ks, test_errors, "--", ks, train_errors, "-", lw=1)
    pylab.legend(["test error", "train error"], loc="upper right")
    pylab.grid(True, linestyle='-', color='0.75')
    pylab.savefig(
        os.path.join(CHART_DIR, "kcomplexity.png"), bbox_inches="tight")
__init__.py 文件源码 项目:mlprojects-py 作者: srinathperera 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def print_graph(X_all, X_test, y_all, y_pred1, y_pred2):
    training_size = X_all.shape[0] - X_test.shape[0]
    x_full_limit = np.linspace(1, X_all.shape[0], X_all.shape[0])
    y_pred_limit = np.linspace(training_size+1, training_size + 1 + X_test.shape[0], X_test.shape[0])
    plt.plot(x_full_limit, y_all, label='actual', color='b', linewidth=1)
    plt.plot(y_pred_limit, y_pred1, '--', color='r', linewidth=2, label='prediction1')
    plt.plot(y_pred_limit, y_pred2, '--', color='g', linewidth=2, label='prediction2')
    plt.legend(loc=0)
    plt.show()
__init__.py 文件源码 项目:mlprojects-py 作者: srinathperera 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def print_graph_test(y_test, y_pred1, y_pred2, maxEntries=50):
    #y_pred_limit = min(maxEntries, len(y_test))
    length = min(maxEntries,len(y_test))
    y_pred_limit = np.linspace(1, length, length)
    plt.plot(y_pred_limit, y_test, label='actual', color='b', linewidth=1)
    plt.plot(y_pred_limit, y_pred1, '--', color='r', linewidth=2, label='prediction1')
    plt.plot(y_pred_limit, y_pred2, '--', color='g', linewidth=2, label='prediction2')
    plt.legend(loc=0)
    plt.show()
texttiling.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def demo(text=None):
    from nltk.corpus import brown
    from matplotlib import pylab
    tt = TextTilingTokenizer(demo_mode=True)
    if text is None: text = brown.raw()[:10000]
    s, ss, d, b = tt.tokenize(text)
    pylab.xlabel("Sentence Gap index")
    pylab.ylabel("Gap Scores")
    pylab.plot(range(len(s)), s, label="Gap Scores")
    pylab.plot(range(len(ss)), ss, label="Smoothed Gap scores")
    pylab.plot(range(len(d)), d, label="Depth scores")
    pylab.stem(range(len(b)), b)
    pylab.legend()
    pylab.show()
display_monitored.py 文件源码 项目:DeepMonster 作者: olimastro 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def display(pklfile, request=['train_data_accuracy', 'train_sample_accuracy']) :
    for key in request :
        plt.plot(pklfile[key], label=key)

    plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
               ncol=len(request), mode="expand", borderaxespad=0.)
    plt.show()
fit_logic_standalone.py 文件源码 项目:qudi 作者: Ulm-IQO 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def N15_testing2():
    """ Test direkt the implemented fit method with simulated data."""

    x_axis = np.linspace(2850, 2860, 101)*1e6

    mod,params = qudi_fitting.make_multiplelorentzian_model(no_of_functions=2)
#            print('Parameters of the model',mod.param_names)

    p=Parameters()

    p.add('l0_amplitude',value=-3e4)
    p.add('l0_center',value=2850*1e6+abs(np.random.random(1)*8)*1e6)
#            p.add('lorentz0_sigma',value=abs(np.random.random(1)*1)*1e6+0.5*1e6)
    p.add('l0_sigma',value=0.5*1e6)
    p.add('l1_amplitude',value=p['l0_amplitude'].value)
    p.add('l1_center',value=p['l0_center'].value+3.03*1e6)
    p.add('l1_sigma',value=p['l0_sigma'].value)
    p.add('offset',value=100.)

    data_nice = mod.eval(x=x_axis, params=p)

    data_noisy=(data_nice + 14000*np.random.normal(size=x_axis.shape))

    result = qudi_fitting.make_lorentziandouble_fit(x_axis, data_noisy,
                                                       estimator=qudi_fitting.estimate_lorentziandouble_N15)

    plt.figure()
    plt.plot(x_axis, data_noisy,'-b', label='data')
    plt.plot(x_axis, result.init_fit,'-y', label='initial values')
    plt.plot(x_axis, result.best_fit,'-r', label='actual fit')
    plt.plot(x_axis, data_nice,'-g', label='actual fit')
    plt.xlabel('Frequency (Hz)')
    plt.ylabel('Counts (#)')
    plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
               ncol=2, mode="expand", borderaxespad=0.)
    plt.show()
fit_logic_standalone.py 文件源码 项目:qudi 作者: Ulm-IQO 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def N14_testing_data2():
    """ Test the N14 fit with data from file. """

    # get the model of the three lorentzian peak, this gives you the
    # ability to get the used parameter container for the fit.
    mod, params = qudi_fitting.make_multiplelorentzian_model(no_of_functions=3)

    # you can insert the whole path with the windows separator
    # symbol \ just use the r in front of the string to indicated
    # that this is a raw input. The os package will do the rest.
    path = os.path.abspath(r'C:\Users\astark\Dropbox\Doctorwork\Software\QuDi-Git\qudi\pulsedODMRdata.csv')
    data = np.genfromtxt(path,delimiter=',')
#    data = np.loadtxt(path, delimiter=',')
#    print(data)

    # The data for the fit:
    x_axis = data[:,0]*1e8
    data_noisy = data[:,1]


    result = qudi_fitting.make_N14_fit(x_axis, data_noisy)

    print(result.fit_report())

    plt.plot(x_axis, data_noisy,'-b', label='data')
    plt.plot(x_axis,result.best_fit,'-r', label='best fit result')
    plt.plot(x_axis,result.init_fit,'-g',label='initial fit')
#            plt.plot(x_axis, data_test,'-k', label='test data')
    plt.xlabel('Frequency (Hz)')
    plt.ylabel('Counts (#)')
    plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
               ncol=2, mode="expand", borderaxespad=0.)
    plt.show()
fit_logic_standalone.py 文件源码 项目:qudi 作者: Ulm-IQO 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def gaussianpeak_testing2():
    """ Test the implemented Gaussian peak fit. """

    x_axis = np.linspace(0, 5, 11)

    ampl = 10000
    center = 3
    sigma = 1
    offset = 10000

    mod_final, params = qudi_fitting.make_gaussoffset_model()
    data_noisy = mod_final.eval(x=x_axis, amplitude=ampl, center=center,
                                sigma=sigma, offset=offset) + \
                                2000*abs(np.random.normal(size=x_axis.shape))

    result = qudi_fitting.make_gaussoffsetpeak_fit(x_axis=x_axis, data=data_noisy)

    plt.figure()
    plt.plot(x_axis, data_noisy,'-b', label='data')
    plt.plot(x_axis, result.best_fit,'-r', label='best fit result')
    plt.plot(x_axis, result.init_fit,'-g',label='initial fit')
    plt.xlabel('Frequency (Hz)')
    plt.ylabel('Counts (#)')
    plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
               ncol=2, mode="expand", borderaxespad=0.)
    plt.show()
    print(result.fit_report())
fit_logic_standalone.py 文件源码 项目:qudi 作者: Ulm-IQO 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def gaussiandip_testing2():
    """ Test the implemented Gaussian dip fit. """

    x_axis = np.linspace(0, 5, 11)

    ampl = -10000
    center = 3
    sigma = 1
    offset = 10000

    mod_final, params = qudi_fitting.make_gaussoffset_model()
    data_noisy = mod_final.eval(x=x_axis, amplitude=ampl, center=center,
                                sigma=sigma, offset=offset) + \
                                5000*abs(np.random.normal(size=x_axis.shape))

    result = qudi_fitting.make_gaussoffsetdip_fit(x_axis=x_axis, data=data_noisy)

    plt.figure()
    plt.plot(x_axis, data_noisy,'-b', label='data')
    plt.plot(x_axis, result.best_fit,'-r', label='best fit result')
    plt.plot(x_axis, result.init_fit,'-g',label='initial fit')
    plt.xlabel('Frequency (Hz)')
    plt.ylabel('Counts (#)')
    plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
               ncol=2, mode="expand", borderaxespad=0.)
    plt.show()
    print(result.fit_report())
fit_logic_standalone.py 文件源码 项目:qudi 作者: Ulm-IQO 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def gaussianlinearoffset_testing_data():

    x = np.linspace(0, 5, 30)
    x_nice=np.linspace(0, 5, 101)

    mod_final,params = qudi_fitting.make_gaussianwithslope_model()

    data=np.loadtxt("./../1D_shllow.csv")
    data_noisy=data[:,1]
    data_fit=data[:,3]
    x=data[:,2]


    update=dict()
    update["slope"]={"min":-np.inf,"max":np.inf}
    update["offset"]={"min":-np.inf,"max":np.inf}
    update["sigma"]={"min":-np.inf,"max":np.inf}
    update["center"]={"min":-np.inf,"max":np.inf}
    update["amplitude"]={"min":-np.inf,"max":np.inf}
    result=qudi_fitting.make_gaussianwithslope_fit(x_axis=x, data=data_noisy, add_params=update)
#
##
#    gaus=gaussian(3,5)
#    qudi_fitting.data_smooth = filters.convolve1d(qudi_fitting.data_noisy, gaus/gaus.sum(),mode='mirror')

    plt.plot(x,data_noisy,label="data")
    plt.plot(x,data_fit,"k",label="old fit")
    plt.plot(x,result.init_fit,'-g',label='init')
    plt.plot(x,result.best_fit,'-r',label='fit')
    plt.legend()
    plt.show()
    print(result.fit_report())


问题


面经


文章

微信
公众号

扫码关注公众号