python类legend()的实例源码

mesa.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def set_nice_params():
    fsize=18

    params = {'axes.labelsize':  fsize,
    #    'font.family':       'serif',
    'font.family':        'Times New Roman',
    'figure.facecolor':  'white',
    'text.fontsize':     fsize,
    'legend.fontsize':   fsize,
    'xtick.labelsize':   fsize*0.8,
    'ytick.labelsize':   fsize*0.8,
    'ytick.minor.pad': 8,
    'ytick.major.pad': 8,
    'xtick.minor.pad': 8,
    'xtick.major.pad': 8,
    'text.usetex':       False,
    'lines.markeredgewidth': 0}
    pl.rcParams.update(params)
mesa.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def hrd_key(self, key_str):
        """
        plot an HR diagram

        Parameters
        ----------
        key_str : string
            A label string

        """

        pyl.plot(self.data[:,self.cols['log_Teff']-1],\
                 self.data[:,self.cols['log_L']-1],label = key_str)
        pyl.legend()
        pyl.xlabel('log Teff')
        pyl.ylabel('log L')
        x1,x2=pl.xlim()
        if x2 > x1:
            self._xlimrev()
nugridse.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plot_prof_2(self, mod, species, xlim1, xlim2):

        """
        Plot one species for cycle between xlim1 and xlim2

        Parameters
        ----------
        mod : string or integer
            Model to plot, same as cycle number.
        species : list
            Which species to plot.
        xlim1, xlim2 : float
            Mass coordinate range.

        """

        mass=self.se.get(mod,'mass')
        Xspecies=self.se.get(mod,'yps',species)
        pyl.plot(mass,Xspecies,'-',label=str(mod)+', '+species)
        pyl.xlim(xlim1,xlim2)
        pyl.legend()
main.py 文件源码 项目:classical-machine-learning-algorithm 作者: xwzhong 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def plotRes(pre, real, test_x,l):
    s = set(pre)
    col = ['r','b','g','y','m']
    fig = plt.figure()

    ax = fig.add_subplot(111)
    for i in range(0, len(s)):
        index1 = pre == i
        index2 = real == i
        x1 = test_x[index1, :]
        x2 = test_x[index2, :]
        ax.scatter(x1[:,0],x1[:,1],color=col[i],marker='v',linewidths=0.5)
        ax.scatter(x2[:,0],x2[:,1],color=col[i],marker='.',linewidths=12)
    plt.title('learning rating='+str(l))
    plt.legend(('c1:predict','c1:true',\
                'c2:predict','c2:true',
                'c3:predict','c3:true',
                'c4:predict','c4:true',
                'c5:predict','c5:true'), shadow = True, loc = (0.01, 0.4))
    plt.show()
test_imu_state.py 文件源码 项目:prototype 作者: chutsu 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plot_position(self, pos_true, pos_est):
        N = pos_est.shape[1]
        pos_true = pos_true[:, :N]
        pos_est = pos_est[:, :N]

        # Figure
        plt.figure()
        plt.suptitle("Position")

        # Ground truth
        plt.plot(pos_true[0, :], pos_true[1, :],
                 color="red", marker="o", label="Grouth truth")

        # Estimated
        plt.plot(pos_est[0, :], pos_est[1, :],
                 color="blue", marker="o", label="Estimated")

        # Plot labels and legends
        plt.xlabel("East (m)")
        plt.ylabel("North (m)")
        plt.axis("equal")
        plt.legend(loc=0)
dataset.py 文件源码 项目:prototype 作者: chutsu 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def plot(self, track, track_cam_states, estimates):
        plt.figure()

        # Feature
        feature = T_global_camera * track.ground_truth
        plt.plot(feature[0], feature[1],
                 marker="o", color="red", label="feature")

        # Camera states
        for cam_state in track_cam_states:
            pos = T_global_camera * cam_state.p_G
            plt.plot(pos[0], pos[1],
                     marker="o", color="blue", label="camera")

        # Estimates
        for i in range(len(estimates)):
            cam_state = track_cam_states[i]
            cam_pos = T_global_camera * cam_state.p_G
            estimate = (T_global_camera * estimates[i]) + cam_pos
            plt.plot(estimate[0], estimate[1],
                     marker="o", color="green")

        plt.legend(loc=0)
        plt.show()
plot_marginals.py 文件源码 项目:sdp 作者: tansey 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plot_1d(dataset, nbins, data):
    with sns.axes_style('white'):
        plt.rc('font', weight='bold')
        plt.rc('grid', lw=2)
        plt.rc('lines', lw=3)
        plt.figure(1)
        plt.hist(data, bins=np.arange(nbins+1), color='blue')
        plt.ylabel('Count', weight='bold', fontsize=24)
        xticks = list(plt.gca().get_xticks())
        while (nbins-1) / float(xticks[-1]) < 1.1:
            xticks = xticks[:-1]
        while xticks[0] < 0:
            xticks = xticks[1:]
        xticks.append(nbins-1)
        xticks = list(sorted(xticks))
        plt.gca().set_xticks(xticks)
        plt.xlim([int(np.ceil(-0.05*nbins)),int(np.ceil(nbins*1.05))])
        plt.legend(loc='upper right')
        plt.savefig('plots/marginals-{0}.pdf'.format(dataset.replace('_','-')), bbox_inches='tight')
        plt.clf()
        plt.close()
plot_marginals.py 文件源码 项目:sdp 作者: tansey 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def plot_1d(dataset, nbins):
    data = np.loadtxt('experiments/uci/data/splits/{0}_all.csv'.format(dataset), skiprows=1, delimiter=',')[:,-1]
    with sns.axes_style('white'):
        plt.rc('font', weight='bold')
        plt.rc('grid', lw=2)
        plt.rc('lines', lw=3)
        plt.figure(1)
        plt.hist(data, bins=np.arange(nbins+1), color='blue')
        plt.ylabel('Count', weight='bold', fontsize=24)
        xticks = list(plt.gca().get_xticks())
        while (nbins-1) / float(xticks[-1]) < 1.1:
            xticks = xticks[:-1]
        while xticks[0] < 0:
            xticks = xticks[1:]
        xticks.append(nbins-1)
        xticks = list(sorted(xticks))
        plt.gca().set_xticks(xticks)
        plt.xlim([int(np.ceil(-0.05*nbins)),int(np.ceil(nbins*1.05))])
        plt.legend(loc='upper right')
        plt.savefig('plots/marginals-{0}.pdf'.format(dataset.replace('_','-')), bbox_inches='tight')
        plt.clf()
        plt.close()
utils.py 文件源码 项目:Building-Machine-Learning-Systems-With-Python-Second-Edition 作者: PacktPublishing 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plot_roc(auc_score, name, tpr, fpr, label=None):
    pylab.clf()
    pylab.figure(num=None, figsize=(5, 4))
    pylab.grid(True)
    pylab.plot([0, 1], [0, 1], 'k--')
    pylab.plot(fpr, tpr)
    pylab.fill_between(fpr, tpr, alpha=0.5)
    pylab.xlim([0.0, 1.0])
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('False Positive Rate')
    pylab.ylabel('True Positive Rate')
    pylab.title('ROC curve (AUC = %0.2f) / %s' %
                (auc_score, label), verticalalignment="bottom")
    pylab.legend(loc="lower right")
    filename = name.replace(" ", "_")
    pylab.savefig(
        os.path.join(CHART_DIR, "roc_" + filename + ".png"), bbox_inches="tight")
kNN.py 文件源码 项目:statistical-learning-methods-note 作者: ysh329 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def plotKChart(self, misClassDict, saveFigPath):
        kList = []
        misRateList = []
        for k, misClassNum in misClassDict.iteritems():
            kList.append(k)
            misRateList.append(1.0 - 1.0/k*misClassNum)

        fig = plt.figure(saveFigPath)
        plt.plot(kList, misRateList, 'r--')
        plt.title(saveFigPath)
        plt.xlabel('k Num.')
        plt.ylabel('Misclassified Rate')
        plt.legend(saveFigPath)
        plt.grid(True)
        plt.savefig(saveFigPath)
        plt.show()

################################### PART3 TEST ########################################
# ??
backtest.py 文件源码 项目:marketcrush 作者: basaks 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def backtest(config_file, day_trade):
    cfg = config.Config(config_file)
    cfg.day_trade = day_trade
    dfs = load_data(config_file)
    trender = strategies[cfg.strategy](**cfg.strategy_parameters)
    res = []
    for df in dfs:
        res.append(trender.backtest(data_frame=df))
    final_panel = pd.Panel({os.path.basename(p['path']): df for p, df in
                            zip(cfg.data_path, res)})
    profit_series = final_panel.sum(axis=0)['total_profit'].cumsum()
    final_panel.to_excel(cfg.output_file)

    if cfg.show:
        profit_series.plot()
        plt.xlabel('Time')
        plt.ylabel('Profit')
        plt.legend('Profit')
        plt.show()
fit_logic_standalone.py 文件源码 项目:qudi 作者: Ulm-IQO 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def fit_data():
    data=np.loadtxt('data.dat')
    print(data)
    params = dict()
    params["c"] = {"min" : -np.inf,"max" : np.inf}
    result = qudi_fitting.make_lorentzian_fit(axis=data[:,0], data=data[:,3], add_parameters=params)
    print(result.fit_report())
    plt.plot(data[:,0],-data[:,3]+2,"b-o",label="data mean")
#    plt.plot(data[:,0],data[:,1],label="data")
#    plt.plot(data[:,0],data[:,2],label="data")
    plt.plot(data[:,0],-result.best_fit+2,"r-",linewidth=2.,label="fit")
#    plt.plot(data[:,0],result.init_fit,label="init")
    plt.xlabel("time (ns)")
    plt.ylabel("polarization transfer (arb. u.)")
    plt.legend(loc=1)
#    plt.savefig("pol20_24repetition_pol.pdf")
#    plt.savefig("pol20_24repetition_pol.png")
    plt.show()
    savedata=[[data[ii,0],-data[ii,3]+2,-result.best_fit[ii]+2] for ii in range(len(data[:,0]))]
    np.savetxt("pol_data_fit.csv",savedata)
#    print(result.params)

    print(result.params)
tools.py 文件源码 项目:learning-class-invariant-features 作者: sbelharbi 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plot_classes(y, cord, names, test_error, message=""):
    plt.close("all")
    cord = np.array(cord)
    colors = ('b', 'g', 'r', 'c', 'm', 'y', 'k')
    un = np.unique(y)
    fig, ax = plt.subplots()
    for u, col in zip(un, colors):
        ind = np.argwhere(y == u)
        x = cord[ind, :]
        x = x.reshape(x.shape[0], cord.shape[1])
        ax.scatter(x[:, 0], x[:, 1], label="class:" + str(u),
                   color=col)

    plt.legend(loc='upper right', fancybox=True, shadow=True, prop={'size': 8})
    fig.suptitle(
        "Output prediction. Test error:" + str(test_error*100) + "%. " +
        message, fontsize=8)
    return fig
tools.py 文件源码 项目:learning-class-invariant-features 作者: sbelharbi 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def plot_penalty_vl(debug, tag, fold_exp):
    plt.close("all")
    vl = np.array(debug["penalty"])
    fig = plt.figure(figsize=(15, 10.8), dpi=300)
    names = debug["names"]
    for i in range(vl.shape[1]):
        if vl.shape[1] > 1:
            plt.plot(vl[:, i], label="layer_"+str(names[i]))
        else:
            plt.plot(vl[:], label="layer_"+str(names[i]))
    plt.xlabel("mini-batchs")
    plt.ylabel("value of penlaty")
    plt.title(
        "Penalty value over layers:" + "_".join([str(k) for k in names]) +
        ". tag:" + tag)
    plt.legend(loc='upper right', fancybox=True, shadow=True, prop={'size': 8})
    plt.grid(True)
    fig.savefig(fold_exp+"/penalty.png", bbox_inches='tight')
    plt.close('all')
    del fig
tutorial_helpers.py 文件源码 项目:ml_sampler 作者: facebookincubator 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def plot_roc(y_test, y_pred, label=''):
    """Compute ROC curve and ROC area"""

    fpr, tpr, _ = roc_curve(y_test, y_pred)
    roc_auc = auc(fpr, tpr)

    # Plot of a ROC curve for a specific class
    plt.figure()
    plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)
    plt.plot([0, 1], [0, 1], 'k--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver operating characteristic' + label)
    plt.legend(loc="lower right")
    plt.show()
RunBenchmark.py 文件源码 项目:bnpy 作者: bnpy 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def plotSpeedupFigure(AllInfo, maxWorker=1, **kwargs):
    pylab.figure(2)
    xs = AllInfo['nWorker']
    ts_mono = AllInfo['t_monolithic']

    xgrid = np.linspace(0, maxWorker + 0.1, 100)
    pylab.plot(xgrid, xgrid, 'y--', label='ideal parallel')

    for method in getMethodNames(**kwargs):
        speedupRatio = ts_mono / AllInfo['t_' + method]
        pylab.plot(xs, speedupRatio, 'o-',
                   label=method,
                   color=ColorMap[method],
                   markeredgecolor=ColorMap[method])

    pylab.xlim([-0.2, maxWorker + 0.5])
    pylab.ylim([0, maxWorker + 0.5])
    pylab.legend(loc='upper left')
    pylab.xlabel('Number of Workers')
    pylab.ylabel('Speedup over Monolithic')
TestSurrogateBound.py 文件源码 项目:bnpy 作者: bnpy 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def plotBoundVsAlph(alphaVals=np.linspace(.001, 3, 1000),
                    beta1=0.5):
    exactVals = cD_exact(alphaVals, beta1)
    boundVals = cD_bound(alphaVals, beta1)

    assert np.all(exactVals >= boundVals)
    pylab.plot(alphaVals, exactVals, 'k-', linewidth=LINEWIDTH)
    pylab.plot(alphaVals, boundVals, 'r--', linewidth=LINEWIDTH)
    pylab.xlabel("alpha", fontsize=FONTSIZE)
    pylab.ylabel("  ", fontsize=FONTSIZE)
    pylab.xlim([np.min(alphaVals) - 0.1, np.max(alphaVals) + 0.1])
    pylab.ylim([np.min(exactVals) - 0.05, np.max(exactVals) + 0.05])
    pylab.xticks(np.arange(np.max(alphaVals) + 1))

    pylab.legend(['c_D exact',
                  'c_D surrogate'],
                 fontsize=LEGENDSIZE,
                 loc='lower right')
    pylab.tick_params(axis='both', which='major', labelsize=TICKSIZE)
plot.py 文件源码 项目:sr 作者: chutsu 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plot_tree_data(data, indicies_x, indicies_y, model):
    plt.subplot(3, 1, 1)
    data, indicies_x, indicies_y, model = load_tree_data()
    data_line, = plt.plot(data, color="blue", label="data")
    data_indicies_line, = plt.plot(
        indicies_x,
        indicies_y,
        "o",
        color="green",
        label="fitness predictors"
    )
    model_line, = plt.plot(model, color="red", label="model")
    plt.title("Data and Model Output")
    plt.legend()

    return data_line, data_indicies_line, model_line
make_plots.py 文件源码 项目:sr 作者: chutsu 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def plot_tree_data(data, indicies_x, indicies_y, model, plot_indicies=False):
    plt.subplot(3, 1, 1)
    plt.plot(data, "o", color="blue", label="data")
    plt.plot(model, color="red", label="model")
    plt.ylim([-10, 10])

    if plot_indicies:
        plt.plot(
            indicies_x,
            indicies_y,
            "o",
            color="green",
            label="fitness predictors"
        )

    plt.title("Data and Model Output")
    plt.legend()
mesa.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def energy_profile(self,ixaxis):
        """
            Plot radial profile of key energy generations eps_nuc,
            eps_neu etc.

            Parameters
            ----------
            ixaxis : 'mass' or 'radius'
        """

        mass = self.get('mass')
        radius = self.get('radius') * ast.rsun_cm
        eps_nuc = self.get('eps_nuc')
        eps_neu = self.get('non_nuc_neu')

        if ixaxis == 'mass':
            xaxis = mass
            xlab = 'Mass / M$_\odot$'
        else:
            xaxis = old_div(radius, 1.e8) # Mm
            xlab = 'radius / Mm'

        pl.plot(xaxis, np.log10(eps_nuc),
                'k-',
                label='$\epsilon_\mathrm{nuc}>0$')
        pl.plot(xaxis, np.log10(-eps_nuc),
                'k--',
                label='$\epsilon_\mathrm{nuc}<0$')
        pl.plot(xaxis, np.log10(eps_neu),
                'r-',
                label='$\epsilon_\\nu$')

        pl.xlabel(xlab)
        pl.ylabel('$\log(\epsilon_\mathrm{nuc},\epsilon_\\nu)$')
        pl.legend(loc='best').draw_frame(False)
mesa.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def hrd_new(self, input_label="", skip=0):
        """
        plot an HR diagram with options to skip the first N lines and
        add a label string

        Parameters
        ----------
        input_label : string, optional
            Diagram label.  The default is "".
        skip : integer, optional
            Skip the first n lines.  The default is 0.

        """
        xl_old=pyl.gca().get_xlim()
        if input_label == "":
            my_label="M="+str(self.header_attr['initial_mass'])+", Z="+str(self.header_attr['initial_z'])
        else:
            my_label="M="+str(self.header_attr['initial_mass'])+", Z="+str(self.header_attr['initial_z'])+"; "+str(input_label)

        pyl.plot(self.data[skip:,self.cols['log_Teff']-1],self.data[skip:,self.cols['log_L']-1],label = my_label)
        pyl.legend(loc=0)
        xl_new=pyl.gca().get_xlim()
        pyl.xlabel('log Teff')
        pyl.ylabel('log L')
        if any(array(xl_old)==0):
            pyl.gca().set_xlim(max(xl_new),min(xl_new))
        elif any(array(xl_new)==0):
            pyl.gca().set_xlim(max(xl_old),min(xl_old))
        else:
            pyl.gca().set_xlim([max(xl_old+xl_new),min(xl_old+xl_new)])
mesa.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def t_lumi(self,num_frame,xax):
        """
        Luminosity evolution as a function of time or model.

        Parameters
        ----------
        num_frame : integer
            Number of frame to plot this plot into.
        xax : string
            Either model or time to indicate what is to be used on the
            x-axis

        """

        pyl.figure(num_frame)

        if xax == 'time':
            xaxisarray = self.get('star_age')
        elif xax == 'model':
            xaxisarray = self.get('model_number')
        else:
            print('kippenhahn_error: invalid string for x-axis selction. needs to be "time" or "model"')


        logLH   = self.get('log_LH')
        logLHe  = self.get('log_LHe')

        pyl.plot(xaxisarray,logLH,label='L_(H)')
        pyl.plot(xaxisarray,logLHe,label='L(He)')
        pyl.ylabel('log L')
        pyl.legend(loc=2)


        if xax == 'time':
            pyl.xlabel('t / yrs')
        elif xax == 'model':
            pyl.xlabel('model number')
selftest.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_abu_evolution(self):
        from nugridpy import ppn, utils
        import matplotlib
        matplotlib.use('agg')
        import matplotlib.pylab as mpy
        import os

        # Perform tests within temporary directory
        with TemporaryDirectory() as tdir:
            # wget the data for a ppn run from the CADC VOspace
            os.system("wget -q --content-disposition --directory '" + tdir +  "' "\
                          + "'http://www.canfar.phys.uvic.ca/vospace/synctrans?TARGET="\
                          + "vos%3A%2F%2Fcadc.nrc.ca%21vospace%2Fnugrid%2Fdata%2Fprojects%2Fppn%2Fexamples%2F"\
                          + "ppn_Hburn_simple%2Fx-time.dat&DIRECTION=pullFromVoSpace&PROTOCOL"\
                          + "=ivo%3A%2F%2Fivoa.net%2Fvospace%2Fcore%23httpget'")

            #nugrid_dir= os.path.dirname(os.path.dirname(ppn.__file__))
            #NuPPN_dir= nugrid_dir + "/NuPPN"
            #test_data_dir= NuPPN_dir + "/examples/ppn_Hburn_simple/RUN_MASTER"

            symbs=utils.symbol_list('lines2')
            x=ppn.xtime(tdir)
            specs=['PROT','HE  4','C  12','N  14','O  16']
            i=0
            for spec in specs:
                x.plot('time',spec,logy=True,logx=True,shape=utils.linestyle(i)[0],show=False,title='')
                i += 1
            mpy.ylim(-5,0.2)
            mpy.legend(loc=0)
            mpy.xlabel('$\log t / \mathrm{min}$')
            mpy.ylabel('$\log X \mathrm{[mass fraction]}$')
            abu_evol_file = 'abu_evolution.png'
            mpy.savefig(abu_evol_file)
            self.assertTrue(os.path.exists(abu_evol_file))
nugridse.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def set_nice_params():
    fsize=18

    params = {'axes.labelsize':  fsize,
    #    'font.family':       'serif',
    'font.family':        'Times New Roman',
    'figure.facecolor':  'white',
    'text.fontsize':     fsize,
    'legend.fontsize':   fsize,
    'xtick.labelsize':   fsize*0.8,
    'ytick.labelsize':   fsize*0.8,
    'text.usetex':       False}
    pl.rcParams.update(params)
nugridse.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def plot_prof_1(self, mod, species, xlim1, xlim2, ylim1, ylim2,
                    symbol=None):
        """
        plot one species for cycle between xlim1 and xlim2

        Parameters
        ----------
        mod : string or integer
            Model to plot, same as cycle number.
        species : list
            Which species to plot.
        xlim1, xlim2 : float
            Mass coordinate range.
        ylim1, ylim2 : float
            Mass fraction coordinate range.
        symbol : string, optional
            Which symbol you want to use.  If None symbol is set to '-'.
            The default is None.

        """
        DataPlot.plot_prof_1(self,species,mod,xlim1,xlim2,ylim1,ylim2,symbol)
        """
        tot_mass=self.se.get(mod,'total_mass')
        age=self.se.get(mod,'age')
        mass=self.se.get(mod,'mass')
        Xspecies=self.se.get(mod,'iso_massf',species)
        pyl.plot(mass,np.log10(Xspecies),'-',label=species)
        pyl.xlim(xlim1,xlim2)
        pyl.ylim(ylim1,ylim2)
        pyl.legend()

        pl.xlabel('$Mass$ $coordinate$', fontsize=20)
        pl.ylabel('$X_{i}$', fontsize=20)
        pl.title('Mass='+str(tot_mass)+', Time='+str(age)+' years, cycle='+str(mod))
        """
nugridse.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def plot4(self, num):
        """
           Plots the abundances of H-1, He-4, C-12 and O-16.
        """
        self.plot_prof_1(num,'H-1',0.,5.,-5,0.)
        self.plot_prof_1(num,'He-4',0.,5.,-5,0.)
        self.plot_prof_1(num,'C-12',0.,5.,-5,0.)
        self.plot_prof_1(num,'O-16',0.,5.,-5,0.)
        pyl.legend(loc=3)
nugridse.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def plot_prof_sparse(self, mod, species, xlim1, xlim2, ylim1, ylim2,
                         sparse, symbol):

        """
        plot one species for cycle between xlim1 and xlim2.

        Parameters
        ----------
        species : list
            which species to plot.
        mod : string or integer
            Model (cycle) to plot.
        xlim1, xlim2 : float
            Mass coordinate range.
        ylim1, ylim2 : float
            Mass fraction coordinate range.
        sparse : integer
            Sparsity factor for points.
        symbol : string
            which symbol you want to use?

        """
        mass=self.se.get(mod,'mass')
        Xspecies=self.se.get(mod,'yps',species)
        pyl.plot(mass[0:len(mass):sparse],np.log10(Xspecies[0:len(Xspecies):sparse]),symbol)
        pyl.xlim(xlim1,xlim2)
        pyl.ylim(ylim1,ylim2)
        pyl.legend()
nugridse.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def abup_se_plot(mod,species):

        """
        plot species from one ABUPP file and the se file.

        You must use this function in the directory where the ABP files
        are and an ABUP file for model mod must exist.

        Parameters
        ----------
        mod : integer
            Model to plot, you need to have an ABUPP file for that
            model.
        species : string
            The species to plot.

        Notes
        -----
        The species is set to 'C-12'.

        """

# Marco, you have already implemented finding headers and columns in
# ABUP files. You may want to transplant that into here?
        species='C-12'

        filename = 'ABUPP%07d0000.DAT' % mod
        print(filename)
        mass,c12=np.loadtxt(filename,skiprows=4,usecols=[1,18],unpack=True)
        c12_se=self.se.get(mod,'iso_massf','C-12')
        mass_se=self.se.get(mod,'mass')

        pyl.plot(mass,c12)
        pyl.plot(mass_se,c12_se,'o',label='cycle '+str(mod))
        pyl.legend()
generate_plots.py 文件源码 项目:hand_eye_calibration 作者: ethz-asl 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def generate_time_plot(methods, datasets, runtimes_per_method, colors):
  num_methods = len(methods)
  num_datasets = len(datasets)
  x_ticks = np.linspace(0., 1., num_methods)

  width = 0.6 / num_methods / num_datasets
  spacing = 0.4 / num_methods / num_datasets
  fig, ax1 = plt.subplots()
  ax1.set_ylabel('Time [s]', color='b')
  ax1.tick_params('y', colors='b')
  ax1.set_yscale('log')
  fig.suptitle("Hand-Eye Calibration Method Timings", fontsize='24')
  handles = []
  for i, dataset in enumerate(datasets):
    runtimes = [runtimes_per_method[dataset][method] for method in methods]
    bp = ax1.boxplot(
        runtimes, 0, '',
        positions=(x_ticks + (i - num_datasets / 2. + 0.5) *
                   spacing * 2),
        widths=width)
    plt.setp(bp['boxes'], color=colors[i], linewidth=line_width)
    plt.setp(bp['whiskers'], color=colors[i], linewidth=line_width)
    plt.setp(bp['fliers'], color=colors[i],
             marker='+', linewidth=line_width)
    plt.setp(bp['medians'], color=colors[i],
             marker='+', linewidth=line_width)
    plt.setp(bp['caps'], color=colors[i], linewidth=line_width)
    handles.append(mpatches.Patch(color=colors[i], label=dataset))
  plt.legend(handles=handles, loc=2)

  plt.xticks(x_ticks, methods)
  plt.xlim(x_ticks[0] - 2.5 * spacing * num_datasets,
           x_ticks[-1] + 2.5 * spacing * num_datasets)

  plt.show()
plots.py 文件源码 项目:nmmn 作者: rsnemmen 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def onehist(x,xlabel='',fontsize=12):
    """ 
Script that plots the histogram of x with the corresponding xlabel. 
    """

    pylab.clf()
    pylab.rcParams.update({'font.size': fontsize})
    pylab.hist(x,histtype='stepfilled')
    pylab.legend()
    #### Change the X-axis appropriately ####
    pylab.xlabel(xlabel)
    pylab.ylabel('Number')
    pylab.draw()
    pylab.show()


问题


面经


文章

微信
公众号

扫码关注公众号