python类title()的实例源码

tools.py 文件源码 项目:structured-output-ae 作者: sbelharbi 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plot_x_y_yhat(x, y, y_hat, xsz, ysz, binz=False):
    """Plot x, y and y_hat side by side."""
    plt.close("all")
    f = plt.figure(figsize=(15, 10.8), dpi=300)
    gs = gridspec.GridSpec(1, 3)
    if binz:
        y_hat = (y_hat > 0.5) * 1.
    ims = [x, y, y_hat]
    tils = [
        "x:" + str(xsz) + "x" + str(xsz),
        "y:" + str(ysz) + "x" + str(ysz),
        "yhat:" + str(ysz) + "x" + str(ysz)]
    for n, ti in zip([0, 1, 2], tils):
        f.add_subplot(gs[n])
        if n == 0:
            plt.imshow(ims[n], cmap=cm.Greys_r)
        else:
            plt.imshow(ims[n], cmap=cm.Greys_r)
        plt.title(ti)

    return f
tools.py 文件源码 项目:structured-output-ae 作者: sbelharbi 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plot_x_x_yhat(x, x_hat):
    """Plot x, y and y_hat side by side."""
    plt.close("all")
    f = plt.figure()  # figsize=(15, 10.8), dpi=300
    gs = gridspec.GridSpec(1, 2)
    ims = [x, x_hat]
    tils = [
        "xin:" + str(x.shape[0]) + "x" + str(x.shape[1]),
        "xout:" + str(x.shape[1]) + "x" + str(x_hat.shape[1])]
    for n, ti in zip([0, 1], tils):
        f.add_subplot(gs[n])
        plt.imshow(ims[n], cmap=cm.Greys_r)
        plt.title(ti)
        ax = f.gca()
        ax.set_axis_off()

    return f
data_plot.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _clear(self, title=True, xlabel=True, ylabel=True):
        '''
        Method for removing the title and/or xlabel and/or Ylabel.

        Parameters
        ----------
        Title : boolean, optional
            Boolean of if title will be cleared.  The default is True.
        xlabel : boolean, optional
            Boolean of if xlabel will be cleared.  The default is True.
        ylabel : boolean, optional
            Boolean of if ylabel will be cleared.  The default is True.

        '''
        if title:
            pyl.title('')
        if xlabel:
            pyl.xlabel('')
        if ylabel:
            pyl.ylabel('')

    # From mesa.py
lms.py 文件源码 项目:Spherical-robot 作者: Evan-Zhao 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plot(l, x1, x2, y, e):
    # Plot
    time_range = numpy.arange(0, l)
    pl.figure(1)
    pl.subplot(221)
    pl.plot(time_range, x1)
    pl.title("Input signal")
    pl.subplot(222)
    pl.plot(time_range, x2, c="r")
    pl.plot(time_range, y, c="b")
    pl.title("Reference signal")
    pl.subplot(223)
    pl.plot(time_range, e, c="r")
    pl.title("Noise")
    pl.xlabel("time")
    pl.show()
kink_exp.py 文件源码 项目:geepee 作者: thangbui 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plot_prediction_MM(model, y_train, y_test, plot_title=''):
    T = y_test.shape[0]
    mx, vx, my, vy_noiseless, vy = model.predict_forward(T, prop_mode=PROP_MM)
    T_train = y_train.shape[0]
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.plot(np.arange(T_train), y_train[:, 0], 'k+-')
    ttest = np.arange(T_train, T_train+T)
    # pdb.set_trace()
    ax.plot(ttest, my[:, 0], '-', color='b')
    ax.fill_between(
        ttest, 
        my[:, 0] + 2*np.sqrt(vy_noiseless[:, 0]),
        my[:, 0] - 2*np.sqrt(vy_noiseless[:, 0]),
        alpha=0.3, edgecolor='b', facecolor='b')
    ax.fill_between(
        ttest, 
        my[:, 0] + 2*np.sqrt(vy[:, 0]),
        my[:, 0] - 2*np.sqrt(vy[:, 0]),
        alpha=0.1, edgecolor='b', facecolor='b')
    ax.plot(ttest, y_test, 'ro')
    ax.set_xlim([T_train-5, T_train + T])
    plt.title(plot_title)
    plt.savefig('/tmp/kink_pred_MM_'+plot_title+'.pdf')
    # plt.savefig('/tmp/kink_pred_MM_'+plot_title+'.png')
exp_utils.py 文件源码 项目:gcForest 作者: kingfengji 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plot_confusion_matrix(cm, label_list, title='Confusion matrix', cmap=None):
    from matplotlib import pylab
    cm = np.asarray(cm, dtype=np.float32)
    for i, row in enumerate(cm):
        cm[i] = cm[i] / np.sum(cm[i])
    #import matplotlib.pyplot as plt
    #plt.ion()
    pylab.clf()
    pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=1.0)
    ax = pylab.axes()
    ax.set_xticks(range(len(label_list)))
    ax.set_xticklabels(label_list, rotation='vertical')
    ax.xaxis.set_ticks_position('bottom')
    ax.set_yticks(range(len(label_list)))
    ax.set_yticklabels(label_list)
    pylab.title(title)
    pylab.colorbar()
    pylab.grid(False)
    pylab.xlabel('Predicted class')
    pylab.ylabel('True class')
    pylab.grid(False)
    pylab.savefig('test.jpg')
    pylab.show()
main.py 文件源码 项目:classical-machine-learning-algorithm 作者: xwzhong 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plotRes(pre, real, test_x,l):
    s = set(pre)
    col = ['r','b','g','y','m']
    fig = plt.figure()

    ax = fig.add_subplot(111)
    for i in range(0, len(s)):
        index1 = pre == i
        index2 = real == i
        x1 = test_x[index1, :]
        x2 = test_x[index2, :]
        ax.scatter(x1[:,0],x1[:,1],color=col[i],marker='v',linewidths=0.5)
        ax.scatter(x2[:,0],x2[:,1],color=col[i],marker='.',linewidths=12)
    plt.title('learning rating='+str(l))
    plt.legend(('c1:predict','c1:true',\
                'c2:predict','c2:true',
                'c3:predict','c3:true',
                'c4:predict','c4:true',
                'c5:predict','c5:true'), shadow = True, loc = (0.01, 0.4))
    plt.show()
pymod_sup.py 文件源码 项目:pymod 作者: pymodproject 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def ramachandran(PDB_file, title="Ramachandran Plot", AA_list=None,
    pymol_selection=None, engine=None):
    """PROCHECK style Ramachandran Plot
    A wrapper around ramachandran_tkinter and ramachandran_matplotlib

    engine (graphic engine for plotting)
        None - (Default) Use ramachandran_matplotlib if matplotlib is present
               Use ramachandran_tkinter if matplotlib is not importable
        "matplotlib" - Use ramachandran_matplotlib
        "tkinter" - Use ramachandran_tkinter
    """
    if not engine:
        engine="tkinter"

    if engine.lower().startswith("matplotlib"):
        ramachandran_matplotlib(PDB_file=PDB_file,title=title,AA_list=AA_list)
    elif engine.lower().startswith("tk"):
        ramachandran_tkinter(PDB_file=PDB_file,title=title,AA_list=AA_list,
            pymol_selection=pymol_selection)
Drawing.py 文件源码 项目:options 作者: mcmachado 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plotLine(self, x_vals, y_vals, x_label, y_label, title, filename=None):
        plt.clf()

        plt.xlabel(x_label)
        plt.xlim(((min(x_vals) - 0.5), (max(x_vals) + 0.5)))
        plt.ylabel(y_label)
        plt.ylim(((min(y_vals) - 0.5), (max(y_vals) + 0.5)))

        plt.title(title)
        plt.plot(x_vals, y_vals, c='k', lw=2)
        #plt.plot(x_vals, len(x_vals) * y_vals[0], c='r', lw=2)

        if filename == None:
            plt.show()
        else:
            plt.savefig(self.outputPath + filename)
demo_mi.py 文件源码 项目:Building-Machine-Learning-Systems-With-Python-Second-Edition 作者: PacktPublishing 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plot_entropy():
    pylab.clf()
    pylab.figure(num=None, figsize=(5, 4))

    title = "Entropy $H(X)$"
    pylab.title(title)
    pylab.xlabel("$P(X=$coin will show heads up$)$")
    pylab.ylabel("$H(X)$")

    pylab.xlim(xmin=0, xmax=1.1)
    x = np.arange(0.001, 1, 0.001)
    y = -x * np.log2(x) - (1 - x) * np.log2(1 - x)
    pylab.plot(x, y)
    # pylab.xticks([w*7*24 for w in [0,1,2,3,4]], ['week %i'%(w+1) for w in
    # [0,1,2,3,4]])

    pylab.autoscale(tight=True)
    pylab.grid(True)

    filename = "entropy_demo.png"
    pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight")
plot_kmeans_example.py 文件源码 项目:Building-Machine-Learning-Systems-With-Python-Second-Edition 作者: PacktPublishing 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def plot_clustering(x, y, title, mx=None, ymax=None, xmin=None, km=None):
    pylab.figure(num=None, figsize=(8, 6))
    if km:
        pylab.scatter(x, y, s=50, c=km.predict(list(zip(x, y))))
    else:
        pylab.scatter(x, y, s=50)

    pylab.title(title)
    pylab.xlabel("Occurrence word 1")
    pylab.ylabel("Occurrence word 2")

    pylab.autoscale(tight=True)
    pylab.ylim(ymin=0, ymax=1)
    pylab.xlim(xmin=0, xmax=1)
    pylab.grid(True, linestyle='-', color='0.75')

    return pylab
utils.py 文件源码 项目:Building-Machine-Learning-Systems-With-Python-Second-Edition 作者: PacktPublishing 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def plot_feat_importance(feature_names, clf, name):
    pylab.figure(num=None, figsize=(6, 5))
    coef_ = clf.coef_
    important = np.argsort(np.absolute(coef_.ravel()))
    f_imp = feature_names[important]
    coef = coef_.ravel()[important]
    inds = np.argsort(coef)
    f_imp = f_imp[inds]
    coef = coef[inds]
    xpos = np.array(list(range(len(coef))))
    pylab.bar(xpos, coef, width=1)

    pylab.title('Feature importance for %s' % (name))
    ax = pylab.gca()
    ax.set_xticks(np.arange(len(coef)))
    labels = ax.set_xticklabels(f_imp)
    for label in labels:
        label.set_rotation(90)
    filename = name.replace(" ", "_")
    pylab.savefig(os.path.join(
        CHART_DIR, "feat_imp_%s.png" % filename), bbox_inches="tight")
utils.py 文件源码 项目:Building-Machine-Learning-Systems-With-Python-Second-Edition 作者: PacktPublishing 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plot_confusion_matrix(cm, genre_list, name, title):
    pylab.clf()
    pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=1.0)
    ax = pylab.axes()
    ax.set_xticks(range(len(genre_list)))
    ax.set_xticklabels(genre_list)
    ax.xaxis.set_ticks_position("bottom")
    ax.set_yticks(range(len(genre_list)))
    ax.set_yticklabels(genre_list)
    pylab.title(title)
    pylab.colorbar()
    pylab.grid(False)
    pylab.show()
    pylab.xlabel('Predicted class')
    pylab.ylabel('True class')
    pylab.grid(False)
    pylab.savefig(
        os.path.join(CHART_DIR, "confusion_matrix_%s.png" % name), bbox_inches="tight")
utils.py 文件源码 项目:Building-Machine-Learning-Systems-With-Python-Second-Edition 作者: PacktPublishing 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def plot_roc(auc_score, name, tpr, fpr, label=None):
    pylab.clf()
    pylab.figure(num=None, figsize=(5, 4))
    pylab.grid(True)
    pylab.plot([0, 1], [0, 1], 'k--')
    pylab.plot(fpr, tpr)
    pylab.fill_between(fpr, tpr, alpha=0.5)
    pylab.xlim([0.0, 1.0])
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('False Positive Rate')
    pylab.ylabel('True Positive Rate')
    pylab.title('ROC curve (AUC = %0.2f) / %s' %
                (auc_score, label), verticalalignment="bottom")
    pylab.legend(loc="lower right")
    filename = name.replace(" ", "_")
    pylab.savefig(
        os.path.join(CHART_DIR, "roc_" + filename + ".png"), bbox_inches="tight")
utils.py 文件源码 项目:Building-Machine-Learning-Systems-With-Python-Second-Edition 作者: PacktPublishing 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def plot_feat_importance(feature_names, clf, name):
    pylab.clf()
    coef_ = clf.coef_
    important = np.argsort(np.absolute(coef_.ravel()))
    f_imp = feature_names[important]
    coef = coef_.ravel()[important]
    inds = np.argsort(coef)
    f_imp = f_imp[inds]
    coef = coef[inds]
    xpos = np.array(range(len(coef)))
    pylab.bar(xpos, coef, width=1)

    pylab.title('Feature importance for %s' % (name))
    ax = pylab.gca()
    ax.set_xticks(np.arange(len(coef)))
    labels = ax.set_xticklabels(f_imp)
    for label in labels:
        label.set_rotation(90)
    filename = name.replace(" ", "_")
    pylab.savefig(os.path.join(
        CHART_DIR, "feat_imp_%s.png" % filename), bbox_inches="tight")
kNN.py 文件源码 项目:statistical-learning-methods-note 作者: ysh329 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plotKChart(self, misClassDict, saveFigPath):
        kList = []
        misRateList = []
        for k, misClassNum in misClassDict.iteritems():
            kList.append(k)
            misRateList.append(1.0 - 1.0/k*misClassNum)

        fig = plt.figure(saveFigPath)
        plt.plot(kList, misRateList, 'r--')
        plt.title(saveFigPath)
        plt.xlabel('k Num.')
        plt.ylabel('Misclassified Rate')
        plt.legend(saveFigPath)
        plt.grid(True)
        plt.savefig(saveFigPath)
        plt.show()

################################### PART3 TEST ########################################
# ??
__init__.py 文件源码 项目:mlprojects-py 作者: srinathperera 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def show_feature_importance(gbdt, feature_names=None):
    importance = gbdt.get_fscore(fmap='xgb.fmap')
    importance = sorted(importance.items(), key=operator.itemgetter(1))

    df = pd.DataFrame(importance, columns=['feature', 'fscore'])
    df['fscore'] = df['fscore'] / df['fscore'].sum()
    print "feature importance", df

    if feature_names is not None:
        used_features = df['feature']
        unused_features = [f for f in feature_names if f not in used_features]
        print "[IDF]Unused features:", str(unused_features)

    plt.figure()
    df.plot()
    df.plot(kind='barh', x='feature', y='fscore', legend=False, figsize=(6, 10))
    plt.title('XGBoost Feature Importance')
    plt.xlabel('relative importance')
    plt.gcf().savefig('feature_importance_xgb.png')
tools.py 文件源码 项目:learning-class-invariant-features 作者: sbelharbi 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plot_penalty_vl(debug, tag, fold_exp):
    plt.close("all")
    vl = np.array(debug["penalty"])
    fig = plt.figure(figsize=(15, 10.8), dpi=300)
    names = debug["names"]
    for i in range(vl.shape[1]):
        if vl.shape[1] > 1:
            plt.plot(vl[:, i], label="layer_"+str(names[i]))
        else:
            plt.plot(vl[:], label="layer_"+str(names[i]))
    plt.xlabel("mini-batchs")
    plt.ylabel("value of penlaty")
    plt.title(
        "Penalty value over layers:" + "_".join([str(k) for k in names]) +
        ". tag:" + tag)
    plt.legend(loc='upper right', fancybox=True, shadow=True, prop={'size': 8})
    plt.grid(True)
    fig.savefig(fold_exp+"/penalty.png", bbox_inches='tight')
    plt.close('all')
    del fig
tools.py 文件源码 项目:learning-class-invariant-features 作者: sbelharbi 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def plot_x_y_yhat(x, y, y_hat, xsz, ysz, binz=False):
    """Plot x, y and y_hat side by side."""
    plt.close("all")
    f = plt.figure(figsize=(15, 10.8), dpi=300)
    gs = gridspec.GridSpec(1, 3)
    if binz:
        y_hat = (y_hat > 0.5) * 1.
    ims = [x, y, y_hat]
    tils = [
        "x:" + str(xsz) + "x" + str(xsz),
        "y:" + str(ysz) + "x" + str(ysz),
        "yhat:" + str(ysz) + "x" + str(ysz)]
    for n, ti in zip([0, 1, 2], tils):
        f.add_subplot(gs[n])
        if n == 0:
            plt.imshow(ims[n], cmap=cm.Greys_r)
        else:
            plt.imshow(ims[n], cmap=cm.Greys_r)
        plt.title(ti)

    return f
tutorial_helpers.py 文件源码 项目:ml_sampler 作者: facebookincubator 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def plot_roc(y_test, y_pred, label=''):
    """Compute ROC curve and ROC area"""

    fpr, tpr, _ = roc_curve(y_test, y_pred)
    roc_auc = auc(fpr, tpr)

    # Plot of a ROC curve for a specific class
    plt.figure()
    plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)
    plt.plot([0, 1], [0, 1], 'k--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver operating characteristic' + label)
    plt.legend(loc="lower right")
    plt.show()
utils.py 文件源码 项目:genrec 作者: kkanellis 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plot_confusion_matrix(cm, plot_title, filename, genres=None):
    if not genres:
        genres = GENRES

    pylab.clf()
    pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=100.0)

    axes = pylab.axes()
    axes.set_xticks(range(len(genres)))
    axes.set_xticklabels(genres, rotation=45)

    axes.set_yticks(range(len(genres)))
    axes.set_yticklabels(genres)
    axes.xaxis.set_ticks_position("bottom")

    pylab.title(plot_title, fontsize=14)
    pylab.colorbar()
    pylab.xlabel('Predicted class', fontsize=12)
    pylab.ylabel('Correct class', fontsize=12)
    pylab.grid(False)
    #pylab.show()
    pylab.savefig(os.path.join(PLOTS_DIR, "cm_%s.eps" % filename), bbox_inches="tight")
exp_utils.py 文件源码 项目:gcforest 作者: w821881341 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plot_confusion_matrix(cm, label_list, title='Confusion matrix', cmap=None):
    from matplotlib import pylab
    cm = np.asarray(cm, dtype=np.float32)
    for i, row in enumerate(cm):
        cm[i] = cm[i] / np.sum(cm[i])
    #import matplotlib.pyplot as plt
    #plt.ion()
    pylab.clf()
    pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=1.0)
    ax = pylab.axes()
    ax.set_xticks(range(len(label_list)))
    ax.set_xticklabels(label_list, rotation='vertical')
    ax.xaxis.set_ticks_position('bottom')
    ax.set_yticks(range(len(label_list)))
    ax.set_yticklabels(label_list)
    pylab.title(title)
    pylab.colorbar()
    pylab.grid(False)
    pylab.xlabel('Predicted class')
    pylab.ylabel('True class')
    pylab.grid(False)
    pylab.savefig('test.jpg')
    pylab.show()
utils.py 文件源码 项目:ML 作者: saurabhsuman47 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plot_feat_importance(feature_names, clf, name):
    pylab.figure(num=None, figsize=(6, 5))
    coef_ = clf.coef_
    important = np.argsort(np.absolute(coef_.ravel()))
    f_imp = feature_names[important]
    coef = coef_.ravel()[important]
    inds = np.argsort(coef)
    f_imp = f_imp[inds]
    coef = coef[inds]
    xpos = np.array(list(range(len(coef))))
    pylab.bar(xpos, coef, width=1)

    pylab.title('Feature importance for %s' % (name))
    ax = pylab.gca()
    ax.set_xticks(np.arange(len(coef)))
    labels = ax.set_xticklabels(f_imp)
    for label in labels:
        label.set_rotation(90)
    filename = name.replace(" ", "_")
    pylab.savefig(os.path.join(
        CHART_DIR, "feat_imp_%s.png" % filename), bbox_inches="tight")
utils.py 文件源码 项目:ML 作者: saurabhsuman47 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plot_feat_importance(feature_names, clf, name):
    pylab.figure(num=None, figsize=(6, 5))
    coef_ = clf.coef_
    important = np.argsort(np.absolute(coef_.ravel()))
    f_imp = feature_names[important]
    coef = coef_.ravel()[important]
    inds = np.argsort(coef)
    f_imp = f_imp[inds]
    coef = coef[inds]
    xpos = np.array(list(range(len(coef))))
    pylab.bar(xpos, coef, width=1)

    pylab.title('Feature importance for %s' % (name))
    ax = pylab.gca()
    ax.set_xticks(np.arange(len(coef)))
    labels = ax.set_xticklabels(f_imp)
    for label in labels:
        label.set_rotation(90)
    filename = name.replace(" ", "_")
    pylab.savefig(os.path.join(
        CHART_DIR, "feat_imp_%s.png" % filename), bbox_inches="tight")
code.py 文件源码 项目:COMSW4721_MachineLearning_HomeWork 作者: aarshayj 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def nmf(fdoc, fvocab):
    T = 100

    nmf = NMF(fdoc, fvocab)
    nmf.train(T)
    nmf.get_words()
    # print(mf.R)

    plt.figure()
    plt.plot(range(1,T+1),nmf.objective)
    plt.xticks(np.linspace(1,T,10))
    plt.xlabel('Iterations')
    plt.ylabel('Objective')
    plt.title('Variation of objective with iterations')
    plt.savefig('hw5_2a.png')
    plt.show()
code.py 文件源码 项目:COMSW4721_MachineLearning_HomeWork 作者: aarshayj 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def gp_partd(Xtrain,ytrain,Xtest,ytest):
    gp = gaussian_process(Xtrain[:,3],ytrain,Xtrain[:,3],ytrain)


    gp.init_kernel_matrices(b=5,var=2)
    gp.predict_test()

    x = np.asarray(Xtrain[:,3]).flatten()
    xsortind = np.argsort(x)
    y1 = np.asarray(ytrain).flatten()
    y2 = np.asarray(gp.test_predictions).flatten()
    plt.figure()
    plt.scatter(x[xsortind],y1[xsortind])
    plt.plot(x[xsortind],y2[xsortind],'b-')
    plt.xlabel('Car Weight (Dimension 4)')
    plt.ylabel('Outcome')
    plt.title('Visualizing model through single dimension')
    plt.savefig('hw3_gaussian_dim4_viz')
    plt.show()
plot.py 文件源码 项目:sr 作者: chutsu 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plot_tree_data(data, indicies_x, indicies_y, model):
    plt.subplot(3, 1, 1)
    data, indicies_x, indicies_y, model = load_tree_data()
    data_line, = plt.plot(data, color="blue", label="data")
    data_indicies_line, = plt.plot(
        indicies_x,
        indicies_y,
        "o",
        color="green",
        label="fitness predictors"
    )
    model_line, = plt.plot(model, color="red", label="model")
    plt.title("Data and Model Output")
    plt.legend()

    return data_line, data_indicies_line, model_line
make_plots.py 文件源码 项目:sr 作者: chutsu 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def plot_tree_data(data, indicies_x, indicies_y, model, plot_indicies=False):
    plt.subplot(3, 1, 1)
    plt.plot(data, "o", color="blue", label="data")
    plt.plot(model, color="red", label="model")
    plt.ylim([-10, 10])

    if plot_indicies:
        plt.plot(
            indicies_x,
            indicies_y,
            "o",
            color="green",
            label="fitness predictors"
        )

    plt.title("Data and Model Output")
    plt.legend()
tdose_utilities.py 文件源码 项目:TDOSE 作者: kasperschmidt 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def gen_aperture(imgsize,ypos,xpos,radius,pixval=1,showaperture=False,verbose=True):
    """
    Generating an aperture image

    --- INPUT ---
    imgsize       The dimensions of the array to return. Expects [y-size,x-size].
                  The aperture will be positioned in the center of a (+/-x-size/2., +/-y-size/2) sized array
    ypos          Pixel position in the y direction
    xpos          Pixel position in the x direction
    radius        Radius of aperture in pixels
    showaperture  Display image of generated aperture
    verbose       Toggle verbosity

    --- EXAMPLE OF USE ---
    import tdose_utilities as tu
    apertureimg  = tu.gen_aperture([20,40],10,5,10,showaperture=True)
    apertureimg  = tu.gen_aperture([2000,4000],900,1700,150,showaperture=True)

    """
    if verbose: print ' - Generating aperture in image (2D array)'
    y , x    = np.ogrid[-ypos:imgsize[0]-ypos, -xpos:imgsize[1]-xpos]
    mask     = x*x + y*y <= radius**2.
    aperture = np.zeros(imgsize)

    if verbose: print ' - Assigning pixel value '+str(pixval)+' to aperture'
    aperture[mask] = pixval

    if showaperture:
        if verbose: print ' - Displaying resulting image of aperture'
        plt.imshow(aperture,interpolation='none')
        plt.title('Generated aperture')
        plt.show()

    return aperture
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
tdose_utilities.py 文件源码 项目:TDOSE 作者: kasperschmidt 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def gen_overview_plot_image(ax,imagefile,imgext=0,cubelayer=1,title='Img Title?',fontsize=6,lthick=2,alpha=0.5,
                            cmap='coolwarm'):
    """
    Plotting commands for image (cube layer) overview plotting

    --- INPUT ---

    cubelayer     If the content of the file is a cube, provide the cube layer to plot. If
                    cubelayer = 'fmax' the layer with most flux is plotted

    """

    ax.set_title(title,fontsize=fontsize)
    if os.path.isfile(imagefile):
        imgdata = pyfits.open(imagefile)[imgext].data

        if len(imgdata.shape) == 3: # it is a cube
            imgdata = imgdata[cubelayer,:,:]

        ax.imshow(imgdata, interpolation='None',cmap=cmap,aspect='equal', origin='lower')

        ax.set_xlabel('x-pixel')
        ax.set_ylabel('y-pixel ')
        ax.set_xticks([])
        ax.set_yticks([])

    else:
        textstr = 'No image\nfound'
        ax.text(1.0,22,textstr,horizontalalignment='center',verticalalignment='center',fontsize=fontsize)

        ax.set_ylim([28,16])
        ax.plot([0.0,2.0],[28,16],'r--',lw=lthick)
        ax.plot([2.0,0.0],[28,16],'r--',lw=lthick)

        ax.set_xlabel(' ')
        ax.set_ylabel(' ')
        ax.set_xticks([])
        ax.set_yticks([])

# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =


问题


面经


文章

微信
公众号

扫码关注公众号