def plot(l, samp, w1, w2, cor):
time_range = numpy.arange(0, l) * (1.0 / samp)
pl.figure(1)
pl.subplot(211)
pl.plot(time_range, w1)
pl.subplot(212)
pl.plot(time_range, w2, c="r")
pl.xlabel("time")
pl.figure(2)
pl.plot(time_range, cor)
pl.show()
python类xlabel()的实例源码
def main():
sampling, maxvalue, wave_data = record.record()
# Pick out two channels for our study.
w1, w2 = wave_data[1:3]
nframes = w1.shape[0]
# Cut one channel in the tail, while the other in the head,
# to guarantee same length and first delays second.
cut_time_len = 0.2 # second
cut_len = int(cut_time_len * sampling)
wp1 = w1[:-cut_len]
wp2 = w2[cut_len:]
# Get their reduced (amplitude) version, and
# calculate correlation.
a = numpy.array(wp1, dtype=numpy.double) / maxvalue
b = numpy.array(wp2, dtype=numpy.double) / maxvalue
delay_time = delay.fst_delay_snd(a, b, sampling)
# Plot the channels, also the correlation.
time_range = numpy.arange(0, nframes - cut_len)*(1.0/sampling)
# Still shows the original signal
pl.figure(1)
pl.subplot(211)
pl.plot(time_range, wp1)
pl.subplot(212)
pl.plot(time_range, wp2, c="r")
pl.xlabel("time")
pl.show()
# Print delay
print("Chan 1 delay chan 2 by {0}".format(delay_time))
def main():
sampling, maxvalue, wave_data = record.record()
# Pick out two channels for our study.
w1, w2 = wave_data[0:2]
nframes = w1.shape[0]
# Pad one channel in the head, while the other in the tail,
# to guarantee same length.
pad_time_len = 0.01 # second
pad_len = int(pad_time_len * sampling)
pad_arr = numpy.zeros(pad_len)
wp1 = numpy.concatenate((pad_arr, w1))
wp2 = numpy.concatenate((w2, pad_arr))
# Get their reduced (amplitude) version, and
# calculate correlation.
a = numpy.array(wp1, dtype=numpy.double) / maxvalue
b = numpy.array(wp2, dtype=numpy.double) / maxvalue
delay_time = delay.fst_delay_snd(a, b, sampling)
# Plot the channels, also the correlation.
time_range = numpy.arange(0, nframes + pad_len)*(1.0/sampling)
# Still shows the original signal
pl.figure(1)
pl.subplot(211)
pl.plot(time_range, wp1)
pl.subplot(212)
pl.plot(time_range, wp2, c="r")
pl.xlabel("time")
pl.show()
# Print delay
print("Chan 1 delay chan 2 by {0}".format(delay_time))
def plot_channel(audio, sampling):
channels, nframes = audio.shape[0], audio.shape[1]
time_range = numpy.arange(0, nframes) * (1.0 / sampling)
for i in range(1, channels + 1):
pl.figure(i)
pl.plot(time_range, audio[i - 1])
pl.xlabel("time{0}".format(i))
pl.show()
def onehist(x,xlabel='',fontsize=12):
"""
Script that plots the histogram of x with the corresponding xlabel.
"""
pylab.clf()
pylab.rcParams.update({'font.size': fontsize})
pylab.hist(x,histtype='stepfilled')
pylab.legend()
#### Change the X-axis appropriately ####
pylab.xlabel(xlabel)
pylab.ylabel('Number')
pylab.draw()
pylab.show()
Top_Trending.py 文件源码
项目:Trending-Places-in-OpenStreetMap
作者: geometalab
项目源码
文件源码
阅读 28
收藏 0
点赞 0
评论 0
def plot_graphs(df, trending_daily, day_from, day_to, limit, country_code, folder_out=None):
days = pd.DatetimeIndex(start=day_from, end=day_to, freq='D')
for day in days:
fig = plt.figure()
ax = fig.add_subplot(111)
plt.rc('lines', linewidth=2)
data = trending_daily.get_group(str(day.date()))
places, clusters = top_trending(data, limit)
for cluster in clusters:
places.add(max_from_cluster(cluster, data))
ax.set_prop_cycle(plt.cycler('color', ['r', 'b', 'yellow'] + [plt.cm.Accent(i) for i in np.linspace(0, 1, limit-3)]
) + plt.cycler('linestyle', ['-', '-', '-', '-', '-', '--', '--', '--', '--', '--']))
frame = export(places, clusters, data)
frame.sort_values('trending_rank', ascending=False, inplace=True)
for i in range(len(frame)):
item = frame.index[i]
lat, lon, country = item
result_items = ReverseGeoCode().get_address_attributes(lat, lon, 10, 'city', 'country_code')
if 'city' not in result_items.keys():
mark = "%s (%s)" % (manipulate_display_name(result_items['display_name']),
result_items['country_code'].upper() if 'country_code' in result_items.keys() else country)
else:
if check_eng(result_items['city']):
mark = "%s (%s)" % (result_items['city'], result_items['country_code'].upper())
else:
mark = "%.2f %.2f (%s)" % (lat, lon, result_items['country_code'].upper())
gp = df.loc[item].plot(ax=ax, x='date', y='count', label=mark)
ax.tick_params(axis='both', which='major', labelsize=10)
ax.set_yscale("log", nonposy='clip')
plt.xlabel('Date', fontsize='small', verticalalignment='baseline', horizontalalignment='right')
plt.ylabel('Total number of views (log)', fontsize='small', verticalalignment='center', horizontalalignment='center', labelpad=6)
gp.legend(loc='best', fontsize='xx-small', ncol=2)
gp.set_title('Top 10 OSM trending places on ' + str(day.date()), {'fontsize': 'large', 'verticalalignment': 'bottom'})
plt.tight_layout()
db = TrendingDb()
db.update_table_img(plt, str(day.date()), region=country_code)
plt.close()
def dispersion_plot(text, words, ignore_case=False, title="Lexical Dispersion Plot"):
"""
Generate a lexical dispersion plot.
:param text: The source text
:type text: list(str) or enum(str)
:param words: The target words
:type words: list of str
:param ignore_case: flag to set if case should be ignored when searching text
:type ignore_case: bool
"""
try:
from matplotlib import pylab
except ImportError:
raise ValueError('The plot function requires matplotlib to be installed.'
'See http://matplotlib.org/')
text = list(text)
words.reverse()
if ignore_case:
words_to_comp = list(map(str.lower, words))
text_to_comp = list(map(str.lower, text))
else:
words_to_comp = words
text_to_comp = text
points = [(x,y) for x in range(len(text_to_comp))
for y in range(len(words_to_comp))
if text_to_comp[x] == words_to_comp[y]]
if points:
x, y = list(zip(*points))
else:
x = y = ()
pylab.plot(x, y, "b|", scalex=.1)
pylab.yticks(list(range(len(words))), words, color="b")
pylab.ylim(-1, len(words))
pylab.title(title)
pylab.xlabel("Word Offset")
pylab.show()
def plot_word_freq_dist(text):
fd = text.vocab()
samples = [item for item, _ in fd.most_common(50)]
values = [fd[sample] for sample in samples]
values = [sum(values[:i+1]) * 100.0/fd.N() for i in range(len(values))]
pylab.title(text.name)
pylab.xlabel("Samples")
pylab.ylabel("Cumulative Percentage")
pylab.plot(values)
pylab.xticks(range(len(samples)), [str(s) for s in samples], rotation=90)
pylab.show()
def demo(text=None):
from nltk.corpus import brown
from matplotlib import pylab
tt = TextTilingTokenizer(demo_mode=True)
if text is None: text = brown.raw()[:10000]
s, ss, d, b = tt.tokenize(text)
pylab.xlabel("Sentence Gap index")
pylab.ylabel("Gap Scores")
pylab.plot(range(len(s)), s, label="Gap Scores")
pylab.plot(range(len(ss)), ss, label="Smoothed Gap scores")
pylab.plot(range(len(d)), d, label="Depth scores")
pylab.stem(range(len(b)), b)
pylab.legend()
pylab.show()
def plot_position(self, pos_true, pos_est, cam_states):
N = pos_est.shape[1]
pos_true = pos_true[:, :N]
pos_est = pos_est[:, :N]
# Figure
plt.figure()
plt.suptitle("Position")
# Ground truth
plt.plot(pos_true[0, :], pos_true[1, :],
color="red", label="Grouth truth")
# color="red", marker="x", label="Grouth truth")
# Estimated
plt.plot(pos_est[0, :], pos_est[1, :],
color="blue", label="Estimated")
# color="blue", marker="o", label="Estimated")
# Sliding window
cam_pos = []
for cam_state in cam_states:
cam_pos.append(cam_state.p_G)
cam_pos = np.array(cam_pos).reshape((len(cam_pos), 3)).T
plt.plot(cam_pos[0, :], cam_pos[1, :],
color="green", label="Camera Poses")
# color="green", marker="o", label="Camera Poses")
# Plot labels and legends
plt.xlabel("East (m)")
plt.ylabel("North (m)")
plt.axis("equal")
plt.legend(loc=0)
def plot_velocity(self, timestamps, vel_true, vel_est):
N = vel_est.shape[1]
t = timestamps[:N]
vel_true = vel_true[:, :N]
vel_est = vel_est[:, :N]
# Figure
plt.figure()
plt.suptitle("Velocity")
# X axis
plt.subplot(311)
plt.plot(t, vel_true[0, :], color="red", label="Ground_truth")
plt.plot(t, vel_est[0, :], color="blue", label="Estimate")
plt.title("x-axis")
plt.xlabel("Date Time")
plt.ylabel("ms^-1")
plt.legend(loc=0)
# Y axis
plt.subplot(312)
plt.plot(t, vel_true[1, :], color="red", label="Ground_truth")
plt.plot(t, vel_est[1, :], color="blue", label="Estimate")
plt.title("y-axis")
plt.xlabel("Date Time")
plt.ylabel("ms^-1")
plt.legend(loc=0)
# Z axis
plt.subplot(313)
plt.plot(t, vel_true[2, :], color="red", label="Ground_truth")
plt.plot(t, vel_est[2, :], color="blue", label="Estimate")
plt.title("z-axis")
plt.xlabel("Date Time")
plt.ylabel("ms^-1")
plt.legend(loc=0)
def plot_attitude(self, timestamps, att_true, att_est):
# Setup
N = att_est.shape[1]
t = timestamps[:N]
att_true = att_true[:, :N]
att_est = att_est[:, :N]
# Figure
plt.figure()
plt.suptitle("Attitude")
# X axis
plt.subplot(311)
plt.plot(t, att_true[0, :], color="red", label="Ground_truth")
plt.plot(t, att_est[0, :], color="blue", label="Estimate")
plt.title("x-axis")
plt.legend(loc=0)
plt.xlabel("Date Time")
plt.ylabel("rad s^-1")
# Y axis
plt.subplot(312)
plt.plot(t, att_true[1, :], color="red", label="Ground_truth")
plt.plot(t, att_est[1, :], color="blue", label="Estimate")
plt.title("y-axis")
plt.legend(loc=0)
plt.xlabel("Date Time")
plt.ylabel("rad s^-1")
# Z axis
plt.subplot(313)
plt.plot(t, att_true[2, :], color="red", label="Ground_truth")
plt.plot(t, att_est[2, :], color="blue", label="Estimate")
plt.title("z-axis")
plt.legend(loc=0)
plt.xlabel("Date Time")
plt.ylabel("rad s^-1")
def plot_velocity(self, timestamps, vel_true, vel_est):
N = vel_est.shape[1]
t = timestamps[:N]
vel_true = vel_true[:, :N]
vel_est = vel_est[:, :N]
# Figure
plt.figure()
plt.suptitle("Velocity")
# X axis
plt.subplot(311)
plt.plot(t, vel_true[0, :], color="red", label="Ground_truth")
plt.plot(t, vel_est[0, :], color="blue", label="Estimate")
plt.title("x-axis")
plt.xlabel("Date Time")
plt.ylabel("ms^-1")
plt.legend(loc=0)
# Y axis
plt.subplot(312)
plt.plot(t, vel_true[1, :], color="red", label="Ground_truth")
plt.plot(t, vel_est[1, :], color="blue", label="Estimate")
plt.title("y-axis")
plt.xlabel("Date Time")
plt.ylabel("ms^-1")
plt.legend(loc=0)
# Z axis
plt.subplot(313)
plt.plot(t, vel_true[2, :], color="red", label="Ground_truth")
plt.plot(t, vel_est[2, :], color="blue", label="Estimate")
plt.title("z-axis")
plt.xlabel("Date Time")
plt.ylabel("ms^-1")
plt.legend(loc=0)
def plot_storage(self, storage):
plt.figure()
plt.plot(range(len(storage)), storage)
plt.title("Num of tracks over time")
plt.xlabel("Frame No.")
plt.ylabel("Num of Tracks")
def plot_tracked(self, tracked):
plt.figure()
plt.plot(range(len(tracked)), tracked)
plt.title("Matches per Frame")
plt.xlabel("Frame No.")
plt.ylabel("Num of Tracks")
def plot_1d_model(self):
plt.subplot(131)
plt.plot(self.rho_bg,self.radius)
plt.xlabel('density (kg/m3)')
plt.ylabel('radius (km)')
plt.subplot(132)
plt.plot(self.vp_bg,self.radius)
plt.xlabel('Vp (km/s)')
plt.ylabel('radius (km)')
plt.subplot(133)
plt.plot(self.vs_bg,self.radius)
plt.xlabel('Vs (km/s)')
plt.ylabel('radius (km)')
plt.show()
def plot_q(model='cem', r_min=0.0, r_max=6371.0, dr=1.0):
"""
Plot a radiallysymmetric Q model.
plot_q(model='cem', r_min=0.0, r_max=6371.0, dr=1.0):
r_min=minimum radius [km], r_max=maximum radius [km], dr=radius increment [km]
Currently available models (model): cem, prem, ql6
"""
r = np.arange(r_min, r_max+dr, dr)
q = np.zeros(len(r))
for k in range(len(r)):
if model=='cem':
q[k]=q_cem(r[k])
elif model=='ql6':
q[k]=q_ql6(r[k])
elif model=='prem':
q[k]=q_prem(r[k])
plt.plot(r,q,'k')
plt.xlim((0.0,r_max))
plt.xlabel('radius [km]')
plt.ylabel('Q')
plt.show()
###################################################################################################
#- CEM, EUMOD
###################################################################################################
def xlabel(s, *args, **kwargs):
print "Warning! Failed to import matplotlib so no axes will be labeled"
demo_mi.py 文件源码
项目:Building-Machine-Learning-Systems-With-Python-Second-Edition
作者: PacktPublishing
项目源码
文件源码
阅读 26
收藏 0
点赞 0
评论 0
def _plot_mi_func(x, y):
mi = mutual_info(x, y)
title = "NI($X_1$, $X_2$) = %.3f" % mi
pylab.scatter(x, y)
pylab.title(title)
pylab.xlabel("$X_1$")
pylab.ylabel("$X_2$")
demo_corr.py 文件源码
项目:Building-Machine-Learning-Systems-With-Python-Second-Edition
作者: PacktPublishing
项目源码
文件源码
阅读 21
收藏 0
点赞 0
评论 0
def _plot_correlation_func(x, y):
r, p = pearsonr(x, y)
title = "Cor($X_1$, $X_2$) = %.3f" % r
pylab.scatter(x, y)
pylab.title(title)
pylab.xlabel("$X_1$")
pylab.ylabel("$X_2$")
f1 = scipy.poly1d(scipy.polyfit(x, y, 1))
pylab.plot(x, f1(x), "r--", linewidth=2)
# pylab.xticks([w*7*24 for w in [0,1,2,3,4]], ['week %i'%(w+1) for w in
# [0,1,2,3,4]])