python类plot()的实例源码

draw.py 文件源码 项目:uai2017_learning_to_acquire_information 作者: evanthebouncy 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def draw(m, name, extra=None):
  FIG.clf()

  matrix = m
  orig_shape = np.shape(matrix)
  # lose the channel shape in the end of orig_shape
  new_shape = orig_shape[:-1] 
  matrix = np.reshape(matrix, new_shape)
  ax = FIG.add_subplot(1,1,1)
  ax.set_aspect('equal')
  plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.gray)
  # plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.ocean)
  plt.colorbar()

  if extra != None:
    greens, reds = extra
    grn_x, grn_y, = greens
    red_x, red_y = reds
    plt.scatter(x=grn_x, y=grn_y, c='g', s=40)
    plt.scatter(x=red_x, y=red_y, c='r', s=40)
#  # put a blue dot at (10, 20)
#  plt.scatter([10], [20])
#  # put a red dot, size 40, at 2 locations:
#  plt.scatter(x=[3, 4], y=[5, 6], c='r', s=40)
#  # plt.plot()

  plt.savefig(name)
draw.py 文件源码 项目:uai2017_learning_to_acquire_information 作者: evanthebouncy 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def draw(m, name, extra=None):
  FIG.clf()

  matrix = m
  orig_shape = np.shape(matrix)
  # lose the channel shape in the end of orig_shape
  new_shape = orig_shape[:-1] 
  matrix = np.reshape(matrix, new_shape)
  ax = FIG.add_subplot(1,1,1)
  ax.set_aspect('equal')
  plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.gray)
  # plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.ocean)
  plt.colorbar()

  if extra != None:
    greens, reds = extra
    grn_x, grn_y, = greens
    red_x, red_y = reds
    plt.scatter(x=grn_x, y=grn_y, c='g', s=40)
    plt.scatter(x=red_x, y=red_y, c='r', s=40)
#  # put a blue dot at (10, 20)
#  plt.scatter([10], [20])
#  # put a red dot, size 40, at 2 locations:
#  plt.scatter(x=[3, 4], y=[5, 6], c='r', s=40)
#  # plt.plot()

  plt.savefig(name)
plot.py 文件源码 项目:POT 作者: rflamary 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def plot1D_mat(a, b, M, title=''):
    """ Plot matrix M  with the source and target 1D distribution

    Creates a subplot with the source distribution a on the left and
    target distribution b on the tot. The matrix M is shown in between.


    Parameters
    ----------
    a : np.array, shape (na,)
        Source distribution
    b : np.array, shape (nb,)
        Target distribution
    M : np.array, shape (na,nb)
        Matrix to plot
    """
    na, nb = M.shape

    gs = gridspec.GridSpec(3, 3)

    xa = np.arange(na)
    xb = np.arange(nb)

    ax1 = pl.subplot(gs[0, 1:])
    pl.plot(xb, b, 'r', label='Target distribution')
    pl.yticks(())
    pl.title(title)

    ax2 = pl.subplot(gs[1:, 0])
    pl.plot(a, xa, 'b', label='Source distribution')
    pl.gca().invert_xaxis()
    pl.gca().invert_yaxis()
    pl.xticks(())

    pl.subplot(gs[1:, 1:], sharex=ax1, sharey=ax2)
    pl.imshow(M, interpolation='nearest')
    pl.axis('off')

    pl.xlim((0, nb))
    pl.tight_layout()
    pl.subplots_adjust(wspace=0., hspace=0.2)
plot.py 文件源码 项目:POT 作者: rflamary 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def plot2D_samples_mat(xs, xt, G, thr=1e-8, **kwargs):
    """ Plot matrix M  in 2D with  lines using alpha values

    Plot lines between source and target 2D samples with a color
    proportional to the value of the matrix G between samples.


    Parameters
    ----------
    xs : ndarray, shape (ns,2)
        Source samples positions
    b : ndarray, shape (nt,2)
        Target samples positions
    G : ndarray, shape (na,nb)
        OT matrix
    thr : float, optional
        threshold above which the line is drawn
    **kwargs : dict
        paameters given to the plot functions (default color is black if
        nothing given)
    """
    if ('color' not in kwargs) and ('c' not in kwargs):
        kwargs['color'] = 'k'
    mx = G.max()
    for i in range(xs.shape[0]):
        for j in range(xt.shape[0]):
            if G[i, j] / mx > thr:
                pl.plot([xs[i, 0], xt[j, 0]], [xs[i, 1], xt[j, 1]],
                        alpha=G[i, j] / mx, **kwargs)
gcd.py 文件源码 项目:Spherical-robot 作者: Evan-Zhao 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def fst_delay_snd(fst, snd, samp_rate, max_delay):
    # Verify argument shape.
    s1, s2 = fst.shape, snd.shape
    if len(s1) != 1 or len(s2) != 1 or s1[0] != s2[0]:
        raise Exception("Argument shape invalid, in 'fst_delay_snd' function")

    half_len = int(s1[0]/2)
    a = numpy.array(fst, dtype=numpy.double)
    b = numpy.array(snd, dtype=numpy.double)
    corr = numpy.correlate(a, b, 'same')
    max_pos = numpy.argmax(corr)

    # plot(s1[0], samp_rate, a, b, corr)

    return corr, (max_pos - half_len) / samp_rate
gcd.py 文件源码 项目:Spherical-robot 作者: Evan-Zhao 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def plot(l, samp, w1, w2, cor):
    time_range = numpy.arange(0, l) * (1.0 / samp)

    pl.figure(1)
    pl.subplot(211)
    pl.plot(time_range, w1)
    pl.subplot(212)
    pl.plot(time_range, w2, c="r")
    pl.xlabel("time")

    pl.figure(2)
    pl.plot(time_range, cor)
    pl.show()
cut_chan.py 文件源码 项目:Spherical-robot 作者: Evan-Zhao 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def main():
    sampling, maxvalue, wave_data = record.record()

    # Pick out two channels for our study.
    w1, w2 = wave_data[1:3]
    nframes = w1.shape[0]

    # Cut one channel in the tail, while the other in the head,
    # to guarantee same length and first delays second.
    cut_time_len = 0.2  # second
    cut_len = int(cut_time_len * sampling)
    wp1 = w1[:-cut_len]
    wp2 = w2[cut_len:]

    # Get their reduced (amplitude) version, and
    # calculate correlation.
    a = numpy.array(wp1, dtype=numpy.double) / maxvalue
    b = numpy.array(wp2, dtype=numpy.double) / maxvalue
    delay_time = delay.fst_delay_snd(a, b, sampling)

    # Plot the channels, also the correlation.
    time_range = numpy.arange(0, nframes - cut_len)*(1.0/sampling)

    # Still shows the original signal
    pl.figure(1)
    pl.subplot(211)
    pl.plot(time_range, wp1)
    pl.subplot(212)
    pl.plot(time_range, wp2, c="r")
    pl.xlabel("time")
    pl.show()

    # Print delay
    print("Chan 1 delay chan 2 by {0}".format(delay_time))
pad_chan.py 文件源码 项目:Spherical-robot 作者: Evan-Zhao 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def main():
    sampling, maxvalue, wave_data = record.record()

    # Pick out two channels for our study.
    w1, w2 = wave_data[0:2]
    nframes = w1.shape[0]

    # Pad one channel in the head, while the other in the tail,
    # to guarantee same length.
    pad_time_len = 0.01  # second
    pad_len = int(pad_time_len * sampling)
    pad_arr = numpy.zeros(pad_len)
    wp1 = numpy.concatenate((pad_arr, w1))
    wp2 = numpy.concatenate((w2, pad_arr))

    # Get their reduced (amplitude) version, and
    # calculate correlation.
    a = numpy.array(wp1, dtype=numpy.double) / maxvalue
    b = numpy.array(wp2, dtype=numpy.double) / maxvalue
    delay_time = delay.fst_delay_snd(a, b, sampling)

    # Plot the channels, also the correlation.
    time_range = numpy.arange(0, nframes + pad_len)*(1.0/sampling)

    # Still shows the original signal
    pl.figure(1)
    pl.subplot(211)
    pl.plot(time_range, wp1)
    pl.subplot(212)
    pl.plot(time_range, wp2, c="r")
    pl.xlabel("time")
    pl.show()

    # Print delay
    print("Chan 1 delay chan 2 by {0}".format(delay_time))
lms.py 文件源码 项目:Spherical-robot 作者: Evan-Zhao 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def lms(x1: numpy.array, x2: numpy.array, N: int):
    # Verify argument shape.
    s1, s2 = x1.shape, x2.shape
    if len(s1) != 1 or len(s2) != 1 or s1[0] != s2[0]:
        raise Exception("Argument shape invalid, in 'lms' function")
    l = s1[0]

    # Coefficient matrix
    W = numpy.mat(numpy.zeros([1, 2 * N + 1]))
    # Coefficient (time) matrix
    Wt = numpy.mat(numpy.zeros([l, 2 * N + 1]))
    # Feedback (time) matrix
    y = numpy.mat(numpy.zeros([l, 1]))
    # Error (time) matrix
    e = numpy.mat(numpy.zeros([l, 1]))

    # Traverse channel data
    for i in range(N, l-N):
        x1_vec = numpy.asmatrix(x1[i-N:i+N+1])
        y[i] = x1_vec * numpy.transpose(W)
        e[i] = x2[i] - y[i]
        W += mu * e[i] * x1_vec
        Wt[i] = W

    # Find the coefficient matrix which has max maximum.
    Wt_maxs = numpy.max(Wt, axis=1)
    row_idx = numpy.argmax(Wt_maxs)
    max_W = Wt[row_idx]
    delay_count = numpy.argmax(max_W) - N

    plot(l, x1, x2, y, e)

    return delay_count
visual.py 文件源码 项目:Spherical-robot 作者: Evan-Zhao 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def init():
    global fig1, ln_o, ln_x

    ln_o, = plt.plot([], [], 'ro')
    ln_x, = plt.plot([], [], 'bx')
    plt.xlim(-disp_bound, disp_bound)
    plt.ylim(-disp_bound, disp_bound)
    plt.xlabel('x')
    plt.ylabel('y')
    return ln_o,
visual.py 文件源码 项目:Spherical-robot 作者: Evan-Zhao 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def plot_channel(audio, sampling):
    channels, nframes = audio.shape[0], audio.shape[1]
    time_range = numpy.arange(0, nframes) * (1.0 / sampling)

    for i in range(1, channels + 1):
        pl.figure(i)
        pl.plot(time_range, audio[i - 1])
        pl.xlabel("time{0}".format(i))

    pl.show()
time_alignment_plotting_tools.py 文件源码 项目:hand_eye_calibration 作者: ethz-asl 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def plot_angular_velocities(title,
                            angular_velocities,
                            angular_velocities_filtered,
                            block=True):
  fig = plt.figure()

  title_position = 1.05

  fig.suptitle(title, fontsize='24')

  a1 = plt.subplot(1, 2, 1)
  a1.set_title(
      "Angular Velocities Before Filtering \nvx [red], vy [green], vz [blue]",
      y=title_position)
  plt.plot(angular_velocities[:, 0], c='r')
  plt.plot(angular_velocities[:, 1], c='g')
  plt.plot(angular_velocities[:, 2], c='b')

  a2 = plt.subplot(1, 2, 2)
  a2.set_title(
      "Angular Velocities After Filtering \nvx [red], vy [green], vz [blue]", y=title_position)
  plt.plot(angular_velocities_filtered[:, 0], c='r')
  plt.plot(angular_velocities_filtered[:, 1], c='g')
  plt.plot(angular_velocities_filtered[:, 2], c='b')

  plt.subplots_adjust(left=0.025, right=0.975, top=0.8, bottom=0.05)

  if plt.get_backend() == 'TkAgg':
    mng = plt.get_current_fig_manager()
    max_size = mng.window.maxsize()
    max_size = (max_size[0], max_size[1] * 0.45)
    mng.resize(*max_size)
  plt.show(block=block)
DataRow.py 文件源码 项目:face-landmark 作者: lsy17096535 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def plot(self):
        from matplotlib.pylab import show, plot, stem
        pass
gpr_alpha_examples.py 文件源码 项目:geepee 作者: thangbui 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def run_regression_1D_collapsed():
    np.random.seed(42)

    print "create dataset ..."
    Xtrain, ytrain, Xtest, ytest = create_dataset()

    alphas = [0.001, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 1]
    for alpha in alphas:
        M = 20
        model = vfe.SGPR_collapsed(Xtrain, ytrain, M)
        model.optimise(method='L-BFGS-B', alpha=alpha, maxiter=1000, disp=False)
        my, vy = model.predict_y(Xtest, alpha)
        my = np.reshape(my, ytest.shape)
        vy = np.reshape(vy, ytest.shape)
        rmse = np.sqrt(np.mean((my - ytest)**2))
        ll = np.mean(-0.5 * np.log(2 * np.pi * vy) - 0.5 * (ytest - my)**2 / vy)
        nlml, _ = model.objective_function(model.get_hypers(), alpha)
        print 'alpha=%.3f, train ml=%3f, test rmse=%.3f, ll=%.3f' % (alpha, nlml, rmse, ll)
        # plot(model, Xtrain, ytrain)
        # plt.show()

    # should produce something like this
    # alpha=0.001, train ml=-64.573021, test rmse=0.169, ll=0.348
    # alpha=0.100, train ml=-64.616618, test rmse=0.169, ll=0.348
    # alpha=0.200, train ml=-64.626655, test rmse=0.169, ll=0.348
    # alpha=0.300, train ml=-64.644053, test rmse=0.169, ll=0.348
    # alpha=0.500, train ml=-64.756588, test rmse=0.169, ll=0.348
    # alpha=0.700, train ml=-68.755871, test rmse=0.169, ll=0.350
    # alpha=0.800, train ml=-72.153441, test rmse=0.167, ll=0.349
    # alpha=1.000, train ml=-71.305002, test rmse=0.169, ll=0.303
dgpr_aep_examples.py 文件源码 项目:geepee 作者: thangbui 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def run_regression_1D_stoc():
    np.random.seed(42)

    print "create dataset ..."
    N = 200
    X = np.random.rand(N, 1)
    Y = np.sin(12 * X) + 0.5 * np.cos(25 * X) + np.random.randn(N, 1) * 0.2
    # plt.plot(X, Y, 'kx', mew=2)

    def plot(m):
        xx = np.linspace(-0.5, 1.5, 100)[:, None]
        mean, var = m.predict_f(xx)
        zu = m.sgp_layers[0].zu
        mean_u, var_u = m.predict_f(zu)
        plt.figure()
        plt.plot(X, Y, 'kx', mew=2)
        plt.plot(xx, mean, 'b', lw=2)
        plt.fill_between(
            xx[:, 0],
            mean[:, 0] - 2 * np.sqrt(var[:, 0]),
            mean[:, 0] + 2 * np.sqrt(var[:, 0]),
            color='blue', alpha=0.2)
        plt.errorbar(zu, mean_u, yerr=2 * np.sqrt(var_u), fmt='ro')
        plt.xlim(-0.1, 1.1)

    # inference
    print "create model and optimize ..."
    M = 20
    hidden_size = [2]
    model = aep.SDGPR(X, Y, M, hidden_size, lik='Gaussian')
    model.optimise(method='adam', alpha=1.0,
                   maxiter=50000, mb_size=M, adam_lr=0.001)
    plot(model)
    plt.show()
    plt.savefig('/tmp/aep_dgpr_1D_stoc.pdf')
gplvm_vfe_examples.py 文件源码 项目:geepee 作者: thangbui 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def run_cluster_MC():
    import GPy
    # create dataset
    print "creating dataset..."
    N = 100
    k1 = GPy.kern.RBF(5, variance=1, lengthscale=1. /
                      np.random.dirichlet(np.r_[10, 10, 10, 0.1, 0.1]), ARD=True)
    k2 = GPy.kern.RBF(5, variance=1, lengthscale=1. /
                      np.random.dirichlet(np.r_[10, 0.1, 10, 0.1, 10]), ARD=True)
    k3 = GPy.kern.RBF(5, variance=1, lengthscale=1. /
                      np.random.dirichlet(np.r_[0.1, 0.1, 10, 10, 10]), ARD=True)
    X = np.random.normal(0, 1, (N, 5))
    A = np.random.multivariate_normal(np.zeros(N), k1.K(X), 10).T
    B = np.random.multivariate_normal(np.zeros(N), k2.K(X), 10).T
    C = np.random.multivariate_normal(np.zeros(N), k3.K(X), 10).T

    Y = np.vstack((A, B, C))
    labels = np.hstack((np.zeros(A.shape[0]), np.ones(
        B.shape[0]), np.ones(C.shape[0]) * 2))

    # inference
    np.random.seed(42)
    print "inference ..."
    M = 30
    D = 5
    alpha = 0.5
    lvm = vfe.SGPLVM(Y, D, M, lik='Gaussian')
    lvm.optimise(method='adam', adam_lr=0.05, maxiter=2000, prop_mode=config.PROP_MC)

    ls = np.exp(lvm.sgp_layer.ls)
    print ls
    inds = np.argsort(ls)
    plt.figure()
    mx, vx = lvm.get_posterior_x()
    plt.scatter(mx[:, inds[0]], mx[:, inds[1]], c=labels)
    zu = lvm.sgp_layer.zu
    plt.plot(zu[:, inds[0]], zu[:, inds[1]], 'ko')
    # plt.show()
    plt.savefig('/tmp/gplvm_cluster_MC.pdf')
gplvm_vfe_examples.py 文件源码 项目:geepee 作者: thangbui 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def run_pinwheel():
    def make_pinwheel(radial_std, tangential_std, num_classes, num_per_class, rate,
                      rs=np.random.RandomState(0)):
        """Based on code by Ryan P. Adams."""
        rads = np.linspace(0, 2 * np.pi, num_classes, endpoint=False)

        features = rs.randn(num_classes * num_per_class, 2) \
            * np.array([radial_std, tangential_std])
        features[:, 0] += 1
        labels = np.repeat(np.arange(num_classes), num_per_class)

        angles = rads[labels] + rate * np.exp(features[:, 0])
        rotations = np.stack([np.cos(angles), -np.sin(angles),
                              np.sin(angles), np.cos(angles)])
        rotations = np.reshape(rotations.T, (-1, 2, 2))

        return np.einsum('ti,tij->tj', features, rotations)

    # create dataset
    print "creating dataset..."
    Y = make_pinwheel(radial_std=0.3, tangential_std=0.05, num_classes=3,
                      num_per_class=50, rate=0.4)

    # inference
    print "inference ..."
    M = 20
    D = 2
    lvm = vfe.SGPLVM(Y, D, M, lik='Gaussian')
    lvm.optimise(method='L-BFGS-B')

    mx, vx = lvm.get_posterior_x()

    fig = plt.figure()
    ax = fig.add_subplot(121)
    ax.plot(Y[:, 0], Y[:, 1], 'bx')
    ax = fig.add_subplot(122)
    ax.errorbar(mx[:, 0], mx[:, 1], xerr=np.sqrt(
        vx[:, 0]), yerr=np.sqrt(vx[:, 1]), fmt='xk')
    plt.show()
gplvm_vfe_examples.py 文件源码 项目:geepee 作者: thangbui 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def run_semicircle():
    # create dataset
    print "creating dataset..."
    N = 20
    cos_val = [0.97, 0.95, 0.94, 0.89, 0.8,
               0.88, 0.92, 0.96, 0.7, 0.65,
               0.3, 0.25, 0.1, -0.25, -0.3,
               -0.6, -0.67, -0.75, -0.97, -0.98]
    cos_val = np.array(cos_val).reshape((N, 1))
    # cos_val = 2*np.random.rand(N, 1) - 1
    angles = np.arccos(cos_val)
    sin_val = np.sin(angles)
    Y = np.hstack((sin_val, cos_val))
    Y += 0.05 * np.random.randn(Y.shape[0], Y.shape[1])

    # inference
    print "inference ..."
    M = 10
    D = 2
    lvm = vfe.SGPLVM(Y, D, M, lik='Gaussian')
    lvm.optimise(method='L-BFGS-B', maxiter=2000)
    # lvm.optimise(method='adam', maxiter=2000)

    plt.figure()
    plt.plot(Y[:, 0], Y[:, 1], 'sb')

    mx, vx = lvm.get_posterior_x()
    for i in range(mx.shape[0]):
        mxi = mx[i, :]
        vxi = vx[i, :]
        mxi1 = mxi + np.sqrt(vxi)
        mxi2 = mxi - np.sqrt(vxi)
        mxis = np.vstack([mxi.reshape((1, D)),
                          mxi1.reshape((1, D)),
                          mxi2.reshape((1, D))])
        myis, vyis = lvm.predict_f(mxis)

        plt.errorbar(myis[:, 0], myis[:, 1],
                     xerr=np.sqrt(vyis[:, 0]), yerr=np.sqrt(vyis[:, 1]), fmt='.k')

    plt.show()
gplvm_vfe_examples.py 文件源码 项目:geepee 作者: thangbui 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def run_frey():
    # import dataset
    data = pods.datasets.brendan_faces()
    # Y = data['Y'][:50, :]
    Y = data['Y']
    Yn = Y - np.mean(Y, axis=0)
    Yn /= np.std(Y, axis=0)
    Y = Yn

    # inference
    print "inference ..."
    M = 30
    D = 20
    lvm = vfe.SGPLVM(Y, D, M, lik='Gaussian')
    lvm.optimise(method='L-BFGS-B', maxiter=10)
    plt.figure()
    mx, vx = lvm.get_posterior_x()
    zu = lvm.sgp_layer.zu
    plt.scatter(mx[:, 0], mx[:, 1])
    plt.plot(zu[:, 0], zu[:, 1], 'ko')

    nx = ny = 30
    x_values = np.linspace(-5, 5, nx)
    y_values = np.linspace(-5, 5, ny)
    sx = 28
    sy = 20
    canvas = np.empty((sx * ny, sy * nx))
    for i, yi in enumerate(x_values):
        for j, xi in enumerate(y_values):
            z_mu = np.array([[xi, yi]])
            x_mean, x_var = lvm.predict_f(z_mu)
            canvas[(nx - i - 1) * sx:(nx - i) * sx, j *
                   sy:(j + 1) * sy] = x_mean.reshape(sx, sy)

    plt.figure(figsize=(8, 10))
    Xi, Yi = np.meshgrid(x_values, y_values)
    plt.imshow(canvas, origin="upper", cmap="gray")
    plt.tight_layout()

    plt.show()
gpr_vfe_examples.py 文件源码 项目:geepee 作者: thangbui 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def run_step_1D_collapsed():
    np.random.seed(42)

    print "create dataset ..."
    N = 200
    X = np.random.rand(N, 1) * 3 - 1.5
    Y = step(X)
    # plt.plot(X, Y, 'kx', mew=2)

    def plot(m):
        xx = np.linspace(-3, 3, 100)[:, None]
        mean, var = m.predict_f(xx, alpha)
        zu = m.zu
        mean_u, var_u = m.predict_f(zu)
        plt.figure()
        plt.plot(X, Y, 'kx', mew=2)
        plt.plot(xx, mean, 'b', lw=2)
        plt.fill_between(
            xx[:, 0],
            mean[:, 0] - 2 * np.sqrt(var),
            mean[:, 0] + 2 * np.sqrt(var),
            color='blue', alpha=0.2)
        plt.errorbar(zu, mean_u, yerr=2 * np.sqrt(var_u), fmt='ro')
        # no_samples = 20
        # f_samples = m.sample_f(xx, no_samples)
        # for i in range(no_samples):
        #   plt.plot(xx, f_samples[:, :, i], linewidth=0.5, alpha=0.5)
        plt.xlim(-3, 3)

    # inference
    print "create model and optimize ..."
    M = 20
    alpha = 0.01
    model = vfe.SGPR_collapsed(X, Y, M)
    model.optimise(method='L-BFGS-B', alpha=alpha, maxiter=1000)
    plot(model)
    plt.show()


问题


面经


文章

微信
公众号

扫码关注公众号