python类plot()的实例源码

mesa.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def hrd_key(self, key_str):
        """
        plot an HR diagram

        Parameters
        ----------
        key_str : string
            A label string

        """

        pyl.plot(self.data[:,self.cols['log_Teff']-1],\
                 self.data[:,self.cols['log_L']-1],label = key_str)
        pyl.legend()
        pyl.xlabel('log Teff')
        pyl.ylabel('log L')
        x1,x2=pl.xlim()
        if x2 > x1:
            self._xlimrev()
compare_image_entropy.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def compare_images(path = '.'):
     S_limit = 10.
     file_list = glob.glob(os.path.join(path, 'Abu*'))
     file_list_master = glob.glob(os.path.join(path, 'MasterAbu*'))
     file_list.sort()
     file_list_master.sort()
     S=[]
     print("Identifying images with rmq > "+'%3.1f'%S_limit)
     ierr_count = 0
     for i in range(len(file_list)):
         this_S,fimg1,fimg2 = compare_entropy(file_list[i],file_list_master[i])
         if this_S > S_limit:
              warnings.warn(file_list[i]+" and "+file_list_master[i]+" differ by "+'%6.3f'%this_S)
              ierr_count += 1
              S.append(this_S)
     if ierr_count > 0:
          print("Error: at least one image differs by more than S_limit")
          sys.exit(1)
     #print ("S: ",S)
     #plb.plot(S,'o')
     #plb.xlabel("image number")
     #plb.ylabel("modified log KL-divergence to previous image")
     #plb.show()
nugridse.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plot_prof_2(self, mod, species, xlim1, xlim2):

        """
        Plot one species for cycle between xlim1 and xlim2

        Parameters
        ----------
        mod : string or integer
            Model to plot, same as cycle number.
        species : list
            Which species to plot.
        xlim1, xlim2 : float
            Mass coordinate range.

        """

        mass=self.se.get(mod,'mass')
        Xspecies=self.se.get(mod,'yps',species)
        pyl.plot(mass,Xspecies,'-',label=str(mod)+', '+species)
        pyl.xlim(xlim1,xlim2)
        pyl.legend()
trajectory.py 文件源码 项目:notebook-molecular-visualization 作者: Autodesk 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def plot(traj, x, y, **kwargs):
    """ Create a matplotlib plot of property x against property y

    Args:
        x,y (str): names of the properties
        **kwargs (dict): kwargs for :meth:`matplotlib.pylab.plot`

    Returns:
        List[matplotlib.lines.Lines2D]: the lines that were plotted

    """
    from matplotlib import pylab
    xl = yl = None
    if type(x) is str:
        strx = x
        x = getattr(traj, x)
        xl = '%s / %s' % (strx, getattr(x, 'units', 'dimensionless'))
    if type(y) is str:
        stry = y
        y = getattr(traj, y)
        yl = '%s / %s' % (stry, getattr(y, 'units', 'dimensionless'))
    plt = pylab.plot(x, y, **kwargs)
    pylab.xlabel(xl); pylab.ylabel(yl); pylab.grid()
    return plt
gpr_alpha_examples.py 文件源码 项目:geepee 作者: thangbui 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def plot(m, Xtrain, ytrain):
    xx = np.linspace(-0.5, 1.5, 100)[:, None]
    mean, var = m.predict_y(xx)
    mean = np.reshape(mean, (xx.shape[0], 1))
    var = np.reshape(var, (xx.shape[0], 1))
    if isinstance(m, aep.SDGPR):
        zu = m.sgp_layers[0].zu
    elif isinstance(m, vfe.SGPR_collapsed):
        zu = m.zu
    else:
        zu = m.sgp_layer.zu
    mean_u, var_u = m.predict_f(zu)
    plt.figure()
    plt.plot(Xtrain, ytrain, 'kx', mew=2)
    plt.plot(xx, mean, 'b', lw=2)
    # pdb.set_trace()
    plt.fill_between(
        xx[:, 0],
        mean[:, 0] - 2 * np.sqrt(var[:, 0]),
        mean[:, 0] + 2 * np.sqrt(var[:, 0]),
        color='blue', alpha=0.2)
    plt.errorbar(zu, mean_u, yerr=2 * np.sqrt(var_u), fmt='ro')
    plt.xlim(-0.1, 1.1)
gpr_alpha_examples.py 文件源码 项目:geepee 作者: thangbui 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def run_regression_1D_aep_two_layers():
    np.random.seed(42)

    print "create dataset ..."
    Xtrain, ytrain, Xtest, ytest = create_dataset()

    alpha = 1 # other alpha is not valid here
    M = 20
    model = aep.SDGPR(Xtrain, ytrain, M, hidden_sizes=[2])
    model.optimise(method='L-BFGS-B', alpha=1, maxiter=5000, disp=False)
    my, vy = model.predict_y(Xtest)
    my = np.reshape(my, ytest.shape)
    vy = np.reshape(vy, ytest.shape)
    rmse = np.sqrt(np.mean((my - ytest)**2))
    ll = np.mean(-0.5 * np.log(2 * np.pi * vy) - 0.5 * (ytest - my)**2 / vy)
    nlml, _ = model.objective_function(model.get_hypers(), Xtrain.shape[0], alpha)
    print 'alpha=%.3f, train ml=%3f, test rmse=%.3f, ll=%.3f' % (alpha, nlml, rmse, ll)
    # plot(model, Xtrain, ytrain)
    # plt.show()

    # should produce something like this
    # alpha=1.000, train ml=-51.385404, test rmse=0.168, ll=0.311
gpr_alpha_examples.py 文件源码 项目:geepee 作者: thangbui 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def run_regression_1D_aep_two_layers_stoc():
    np.random.seed(42)

    print "create dataset ..."
    Xtrain, ytrain, Xtest, ytest = create_dataset()

    alpha = 1 # other alpha is not valid here
    M = 20
    model = aep.SDGPR(Xtrain, ytrain, M, hidden_sizes=[2])
    model.optimise(method='adam', alpha=1, maxiter=5000, disp=False)
    my, vy = model.predict_y(Xtest)
    my = np.reshape(my, ytest.shape)
    vy = np.reshape(vy, ytest.shape)
    rmse = np.sqrt(np.mean((my - ytest)**2))
    ll = np.mean(-0.5 * np.log(2 * np.pi * vy) - 0.5 * (ytest - my)**2 / vy)
    nlml, _ = model.objective_function(model.get_hypers(), Xtrain.shape[0], alpha)
    print 'alpha=%.3f, train ml=%3f, test rmse=%.3f, ll=%.3f' % (alpha, nlml, rmse, ll)
    # plot(model, Xtrain, ytrain)
    # plt.show()

    # should produce something like this
    # alpha=1.000, train ml=-69.444086, test rmse=0.170, ll=0.318
plots.py 文件源码 项目:nmmn 作者: rsnemmen 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plot(param, show = 1):

    """Returns the plot of spectrum as a pyplot object or plot it on the screen
    Keyword arguments:

    param -- Output spectrum file
    show  -- Optional, plot the spectrum on the screen. Enabled by default. 
    """

    s = sed.SED()
    s.grmonty(param)
    plt = pylab.plot(s.lognu, s.ll)
    if show == 1:
        pylab.show()
    else:
        return plt
test_imu_state.py 文件源码 项目:prototype 作者: chutsu 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def plot_position(self, pos_true, pos_est):
        N = pos_est.shape[1]
        pos_true = pos_true[:, :N]
        pos_est = pos_est[:, :N]

        # Figure
        plt.figure()
        plt.suptitle("Position")

        # Ground truth
        plt.plot(pos_true[0, :], pos_true[1, :],
                 color="red", marker="o", label="Grouth truth")

        # Estimated
        plt.plot(pos_est[0, :], pos_est[1, :],
                 color="blue", marker="o", label="Estimated")

        # Plot labels and legends
        plt.xlabel("East (m)")
        plt.ylabel("North (m)")
        plt.axis("equal")
        plt.legend(loc=0)
test_camera_model.py 文件源码 项目:prototype 作者: chutsu 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_project(self):
        # Load points
        points_file = join(test.TEST_DATA_PATH, "house/house.p3d")
        points = np.loadtxt(points_file).T

        # Setup camera
        K = np.eye(3)
        R = np.eye(3)
        t = np.array([0, 0, 0])
        camera = PinholeCameraModel(320, 240, K)
        x = camera.project(points, R, t)

        # Assert
        self.assertEqual(x.shape, (3, points.shape[1]))
        self.assertTrue(np.all(x[2, :] == 1.0))

        # Plot projection
        debug = False
        # debug = True
        if debug:
            plt.figure()
            plt.plot(x[0], x[1], 'k. ')
            plt.show()
dataset.py 文件源码 项目:prototype 作者: chutsu 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def plot(self, track, track_cam_states, estimates):
        plt.figure()

        # Feature
        feature = T_global_camera * track.ground_truth
        plt.plot(feature[0], feature[1],
                 marker="o", color="red", label="feature")

        # Camera states
        for cam_state in track_cam_states:
            pos = T_global_camera * cam_state.p_G
            plt.plot(pos[0], pos[1],
                     marker="o", color="blue", label="camera")

        # Estimates
        for i in range(len(estimates)):
            cam_state = track_cam_states[i]
            cam_pos = T_global_camera * cam_state.p_G
            estimate = (T_global_camera * estimates[i]) + cam_pos
            plt.plot(estimate[0], estimate[1],
                     marker="o", color="green")

        plt.legend(loc=0)
        plt.show()
seismograms.py 文件源码 项目:seis_tools 作者: romaguir 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def x_corr(a,b,center_time_s=1000.0,window_len_s=50.0,plot=True):

      center_index = int(center_time_s/a.dt)
      window_index = int(window_len_s/(a.dt))
      print "center_index is", center_index
      print "window_index is", window_index

      t1 = a.trace_x[(center_index - window_index) : (center_index + window_index)]
      t2 = b.trace_x[(center_index - window_index) : (center_index + window_index)]
      print t1

      time_window = np.linspace((-window_len_s/2.0), (window_len_s/2), len(t1))
      #print time_window

      #plt.plot(time_window, t1)
      #plt.plot(time_window, t2)
      #plt.show()

      x_corr_time = correlate(t1, t2)
      delay = (np.argmax(x_corr_time) - (len(x_corr_time)/2) ) * a.dt
      #print "the delay is ", delay
      return delay
Drawing.py 文件源码 项目:options 作者: mcmachado 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def plotValueFunction(self, valueFunction, prefix):
        '''3d plot of a value function.'''
        fig, ax = plt.subplots(subplot_kw = dict(projection = '3d'))
        X, Y = np.meshgrid(np.arange(self.numCols), np.arange(self.numRows))
        Z = valueFunction.reshape(self.numRows, self.numCols)

        for i in xrange(len(X)):
            for j in xrange(len(X[i])/2):
                tmp = X[i][j]
                X[i][j] = X[i][len(X[i]) - j - 1]
                X[i][len(X[i]) - j - 1] = tmp

        my_col = cm.jet(np.random.rand(Z.shape[0],Z.shape[1]))

        ax.plot_surface(X, Y, Z, rstride = 1, cstride = 1,
            cmap = plt.get_cmap('jet'))
        plt.gca().view_init(elev=30, azim=30)
        plt.savefig(self.outputPath + prefix + 'value_function.png')
        plt.close()
Drawing.py 文件源码 项目:options 作者: mcmachado 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def plotLine(self, x_vals, y_vals, x_label, y_label, title, filename=None):
        plt.clf()

        plt.xlabel(x_label)
        plt.xlim(((min(x_vals) - 0.5), (max(x_vals) + 0.5)))
        plt.ylabel(y_label)
        plt.ylim(((min(y_vals) - 0.5), (max(y_vals) + 0.5)))

        plt.title(title)
        plt.plot(x_vals, y_vals, c='k', lw=2)
        #plt.plot(x_vals, len(x_vals) * y_vals[0], c='r', lw=2)

        if filename == None:
            plt.show()
        else:
            plt.savefig(self.outputPath + filename)
demo_mi.py 文件源码 项目:Building-Machine-Learning-Systems-With-Python-Second-Edition 作者: PacktPublishing 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plot_entropy():
    pylab.clf()
    pylab.figure(num=None, figsize=(5, 4))

    title = "Entropy $H(X)$"
    pylab.title(title)
    pylab.xlabel("$P(X=$coin will show heads up$)$")
    pylab.ylabel("$H(X)$")

    pylab.xlim(xmin=0, xmax=1.1)
    x = np.arange(0.001, 1, 0.001)
    y = -x * np.log2(x) - (1 - x) * np.log2(1 - x)
    pylab.plot(x, y)
    # pylab.xticks([w*7*24 for w in [0,1,2,3,4]], ['week %i'%(w+1) for w in
    # [0,1,2,3,4]])

    pylab.autoscale(tight=True)
    pylab.grid(True)

    filename = "entropy_demo.png"
    pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight")
utils.py 文件源码 项目:Building-Machine-Learning-Systems-With-Python-Second-Edition 作者: PacktPublishing 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plot_roc(auc_score, name, tpr, fpr, label=None):
    pylab.clf()
    pylab.figure(num=None, figsize=(5, 4))
    pylab.grid(True)
    pylab.plot([0, 1], [0, 1], 'k--')
    pylab.plot(fpr, tpr)
    pylab.fill_between(fpr, tpr, alpha=0.5)
    pylab.xlim([0.0, 1.0])
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('False Positive Rate')
    pylab.ylabel('True Positive Rate')
    pylab.title('ROC curve (AUC = %0.2f) / %s' %
                (auc_score, label), verticalalignment="bottom")
    pylab.legend(loc="lower right")
    filename = name.replace(" ", "_")
    pylab.savefig(
        os.path.join(CHART_DIR, "roc_" + filename + ".png"), bbox_inches="tight")
kNN.py 文件源码 项目:statistical-learning-methods-note 作者: ysh329 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plotKChart(self, misClassDict, saveFigPath):
        kList = []
        misRateList = []
        for k, misClassNum in misClassDict.iteritems():
            kList.append(k)
            misRateList.append(1.0 - 1.0/k*misClassNum)

        fig = plt.figure(saveFigPath)
        plt.plot(kList, misRateList, 'r--')
        plt.title(saveFigPath)
        plt.xlabel('k Num.')
        plt.ylabel('Misclassified Rate')
        plt.legend(saveFigPath)
        plt.grid(True)
        plt.savefig(saveFigPath)
        plt.show()

################################### PART3 TEST ########################################
# ??
fit_logic_standalone.py 文件源码 项目:qudi 作者: Ulm-IQO 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def linear_testing():
    x_axis = np.linspace(1, 51, 100)
    x_nice = np.linspace(x_axis[0], x_axis[-1], 100)
    mod, params = qudi_fitting.make_linear_model()
    print('Parameters of the model', mod.param_names, ' with the independet variable', mod.independent_vars)

    params['slope'].value = 2  # + abs(np.random.normal(0,1))
    params['offset'].value = 50 #+ abs(np.random.normal(0, 200))
    #print('\n', 'beta', params['beta'].value, '\n', 'lifetime',
          #params['lifetime'].value)
    data_noisy = (mod.eval(x=x_axis, params=params)
                  + 10 * np.random.normal(size=x_axis.shape))

    result = qudi_fitting.make_linear_fit(axis=x_axis, data=data_noisy, add_parameters=None)
    plt.plot(x_axis, data_noisy, 'ob')
    plt.plot(x_nice, mod.eval(x=x_nice, params=params), '-g')
    print(result.fit_report())
    plt.plot(x_axis, result.best_fit, '-r', linewidth=2.0)
    plt.plot(x_axis, result.init_fit, '-y', linewidth=2.0)

    plt.show()
tools.py 文件源码 项目:learning-class-invariant-features 作者: sbelharbi 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def plot_penalty_vl(debug, tag, fold_exp):
    plt.close("all")
    vl = np.array(debug["penalty"])
    fig = plt.figure(figsize=(15, 10.8), dpi=300)
    names = debug["names"]
    for i in range(vl.shape[1]):
        if vl.shape[1] > 1:
            plt.plot(vl[:, i], label="layer_"+str(names[i]))
        else:
            plt.plot(vl[:], label="layer_"+str(names[i]))
    plt.xlabel("mini-batchs")
    plt.ylabel("value of penlaty")
    plt.title(
        "Penalty value over layers:" + "_".join([str(k) for k in names]) +
        ". tag:" + tag)
    plt.legend(loc='upper right', fancybox=True, shadow=True, prop={'size': 8})
    plt.grid(True)
    fig.savefig(fold_exp+"/penalty.png", bbox_inches='tight')
    plt.close('all')
    del fig
tools.py 文件源码 项目:learning-class-invariant-features 作者: sbelharbi 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def add_cifar_10(x, x_cifar_10, sh=True):
    """Add cifar 10 as background."""
    sz = x.shape
    mask = (x == 0) * 1.
    # binarize cifar
    back = x_cifar_10.reshape(x_cifar_10.shape[0], 3, 32, 32).mean(1)
    back = back[:, 2:30, 2:30]  # take 28x28 from the center.
    back /= 255.
    back = back.astype(np.float32)

    # shuffle the index
    if sh:
        ind = np.random.randint(0, x_cifar_10.shape[0], sz[0])  # the index
        for i in range(10):
            np.random.shuffle(ind)
    else:
        # used only to plot images for paper.
        assert x_cifar_10.shape[0] == sz[0]
        ind = np.arange(0,  sz[0])  # the index
    back_sh = back[ind]
    back_sh = back_sh.reshape(back_sh.shape[0], -1)
    back_ready = np.multiply(back_sh, mask)
    out = np.clip(x + back_ready, 0., 1.)
    return out
tutorial_helpers.py 文件源码 项目:ml_sampler 作者: facebookincubator 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def plot_roc(y_test, y_pred, label=''):
    """Compute ROC curve and ROC area"""

    fpr, tpr, _ = roc_curve(y_test, y_pred)
    roc_auc = auc(fpr, tpr)

    # Plot of a ROC curve for a specific class
    plt.figure()
    plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)
    plt.plot([0, 1], [0, 1], 'k--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver operating characteristic' + label)
    plt.legend(loc="lower right")
    plt.show()
tdose_utilities.py 文件源码 项目:TDOSE 作者: kasperschmidt 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def gen_overview_plot_image(ax,imagefile,imgext=0,cubelayer=1,title='Img Title?',fontsize=6,lthick=2,alpha=0.5,
                            cmap='coolwarm'):
    """
    Plotting commands for image (cube layer) overview plotting

    --- INPUT ---

    cubelayer     If the content of the file is a cube, provide the cube layer to plot. If
                    cubelayer = 'fmax' the layer with most flux is plotted

    """

    ax.set_title(title,fontsize=fontsize)
    if os.path.isfile(imagefile):
        imgdata = pyfits.open(imagefile)[imgext].data

        if len(imgdata.shape) == 3: # it is a cube
            imgdata = imgdata[cubelayer,:,:]

        ax.imshow(imgdata, interpolation='None',cmap=cmap,aspect='equal', origin='lower')

        ax.set_xlabel('x-pixel')
        ax.set_ylabel('y-pixel ')
        ax.set_xticks([])
        ax.set_yticks([])

    else:
        textstr = 'No image\nfound'
        ax.text(1.0,22,textstr,horizontalalignment='center',verticalalignment='center',fontsize=fontsize)

        ax.set_ylim([28,16])
        ax.plot([0.0,2.0],[28,16],'r--',lw=lthick)
        ax.plot([2.0,0.0],[28,16],'r--',lw=lthick)

        ax.set_xlabel(' ')
        ax.set_ylabel(' ')
        ax.set_xticks([])
        ax.set_yticks([])

# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
mesa.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def energy_profile(self,ixaxis):
        """
            Plot radial profile of key energy generations eps_nuc,
            eps_neu etc.

            Parameters
            ----------
            ixaxis : 'mass' or 'radius'
        """

        mass = self.get('mass')
        radius = self.get('radius') * ast.rsun_cm
        eps_nuc = self.get('eps_nuc')
        eps_neu = self.get('non_nuc_neu')

        if ixaxis == 'mass':
            xaxis = mass
            xlab = 'Mass / M$_\odot$'
        else:
            xaxis = old_div(radius, 1.e8) # Mm
            xlab = 'radius / Mm'

        pl.plot(xaxis, np.log10(eps_nuc),
                'k-',
                label='$\epsilon_\mathrm{nuc}>0$')
        pl.plot(xaxis, np.log10(-eps_nuc),
                'k--',
                label='$\epsilon_\mathrm{nuc}<0$')
        pl.plot(xaxis, np.log10(eps_neu),
                'r-',
                label='$\epsilon_\\nu$')

        pl.xlabel(xlab)
        pl.ylabel('$\log(\epsilon_\mathrm{nuc},\epsilon_\\nu)$')
        pl.legend(loc='best').draw_frame(False)
mesa.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def CO_ratio(self,ifig,ixaxis):
        """
        plot surface C/O ratio in Figure ifig with x-axis quantity ixaxis

        Parameters
        ----------
        ifig : integer
            Figure number in which to plot
        ixaxis : string
            what quantity is to be on the x-axis, either 'time' or 'model'
            The default is 'model'
        """

        def C_O(model):
            surface_c12=model.get('surface_c12')
            surface_o16=model.get('surface_o16')
            CORatio=old_div((surface_c12*4.),(surface_o16*3.))
            return CORatio

        if ixaxis=='time':
            xax=self.get('star_age')
        elif ixaxis=='model':
            xax=self.get('model_number')
        else:
            raise IOError("ixaxis not recognised")

        pl.figure(ifig)
        pl.plot(xax,C_O(self))
mesa.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def hrd_new(self, input_label="", skip=0):
        """
        plot an HR diagram with options to skip the first N lines and
        add a label string

        Parameters
        ----------
        input_label : string, optional
            Diagram label.  The default is "".
        skip : integer, optional
            Skip the first n lines.  The default is 0.

        """
        xl_old=pyl.gca().get_xlim()
        if input_label == "":
            my_label="M="+str(self.header_attr['initial_mass'])+", Z="+str(self.header_attr['initial_z'])
        else:
            my_label="M="+str(self.header_attr['initial_mass'])+", Z="+str(self.header_attr['initial_z'])+"; "+str(input_label)

        pyl.plot(self.data[skip:,self.cols['log_Teff']-1],self.data[skip:,self.cols['log_L']-1],label = my_label)
        pyl.legend(loc=0)
        xl_new=pyl.gca().get_xlim()
        pyl.xlabel('log Teff')
        pyl.ylabel('log L')
        if any(array(xl_old)==0):
            pyl.gca().set_xlim(max(xl_new),min(xl_new))
        elif any(array(xl_new)==0):
            pyl.gca().set_xlim(max(xl_old),min(xl_old))
        else:
            pyl.gca().set_xlim([max(xl_old+xl_new),min(xl_old+xl_new)])
mesa.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def t_lumi(self,num_frame,xax):
        """
        Luminosity evolution as a function of time or model.

        Parameters
        ----------
        num_frame : integer
            Number of frame to plot this plot into.
        xax : string
            Either model or time to indicate what is to be used on the
            x-axis

        """

        pyl.figure(num_frame)

        if xax == 'time':
            xaxisarray = self.get('star_age')
        elif xax == 'model':
            xaxisarray = self.get('model_number')
        else:
            print('kippenhahn_error: invalid string for x-axis selction. needs to be "time" or "model"')


        logLH   = self.get('log_LH')
        logLHe  = self.get('log_LHe')

        pyl.plot(xaxisarray,logLH,label='L_(H)')
        pyl.plot(xaxisarray,logLHe,label='L(He)')
        pyl.ylabel('log L')
        pyl.legend(loc=2)


        if xax == 'time':
            pyl.xlabel('t / yrs')
        elif xax == 'model':
            pyl.xlabel('model number')
nugridse.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def plot_prof_1(self, mod, species, xlim1, xlim2, ylim1, ylim2,
                    symbol=None):
        """
        plot one species for cycle between xlim1 and xlim2

        Parameters
        ----------
        mod : string or integer
            Model to plot, same as cycle number.
        species : list
            Which species to plot.
        xlim1, xlim2 : float
            Mass coordinate range.
        ylim1, ylim2 : float
            Mass fraction coordinate range.
        symbol : string, optional
            Which symbol you want to use.  If None symbol is set to '-'.
            The default is None.

        """
        DataPlot.plot_prof_1(self,species,mod,xlim1,xlim2,ylim1,ylim2,symbol)
        """
        tot_mass=self.se.get(mod,'total_mass')
        age=self.se.get(mod,'age')
        mass=self.se.get(mod,'mass')
        Xspecies=self.se.get(mod,'iso_massf',species)
        pyl.plot(mass,np.log10(Xspecies),'-',label=species)
        pyl.xlim(xlim1,xlim2)
        pyl.ylim(ylim1,ylim2)
        pyl.legend()

        pl.xlabel('$Mass$ $coordinate$', fontsize=20)
        pl.ylabel('$X_{i}$', fontsize=20)
        pl.title('Mass='+str(tot_mass)+', Time='+str(age)+' years, cycle='+str(mod))
        """
nugridse.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def plot_prof_sparse(self, mod, species, xlim1, xlim2, ylim1, ylim2,
                         sparse, symbol):

        """
        plot one species for cycle between xlim1 and xlim2.

        Parameters
        ----------
        species : list
            which species to plot.
        mod : string or integer
            Model (cycle) to plot.
        xlim1, xlim2 : float
            Mass coordinate range.
        ylim1, ylim2 : float
            Mass fraction coordinate range.
        sparse : integer
            Sparsity factor for points.
        symbol : string
            which symbol you want to use?

        """
        mass=self.se.get(mod,'mass')
        Xspecies=self.se.get(mod,'yps',species)
        pyl.plot(mass[0:len(mass):sparse],np.log10(Xspecies[0:len(Xspecies):sparse]),symbol)
        pyl.xlim(xlim1,xlim2)
        pyl.ylim(ylim1,ylim2)
        pyl.legend()
nugridse.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def abup_se_plot(mod,species):

        """
        plot species from one ABUPP file and the se file.

        You must use this function in the directory where the ABP files
        are and an ABUP file for model mod must exist.

        Parameters
        ----------
        mod : integer
            Model to plot, you need to have an ABUPP file for that
            model.
        species : string
            The species to plot.

        Notes
        -----
        The species is set to 'C-12'.

        """

# Marco, you have already implemented finding headers and columns in
# ABUP files. You may want to transplant that into here?
        species='C-12'

        filename = 'ABUPP%07d0000.DAT' % mod
        print(filename)
        mass,c12=np.loadtxt(filename,skiprows=4,usecols=[1,18],unpack=True)
        c12_se=self.se.get(mod,'iso_massf','C-12')
        mass_se=self.se.get(mod,'mass')

        pyl.plot(mass,c12)
        pyl.plot(mass_se,c12_se,'o',label='cycle '+str(mod))
        pyl.legend()
draw.py 文件源码 项目:uai2017_learning_to_acquire_information 作者: evanthebouncy 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def draw(m, name, extra=None):
  FIG.clf()

  matrix = m
  orig_shape = np.shape(matrix)
  # lose the channel shape in the end of orig_shape
  new_shape = orig_shape[:-1] 
  matrix = np.reshape(matrix, new_shape)
  ax = FIG.add_subplot(1,1,1)
  ax.set_aspect('equal')
  plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.gray)
  # plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.ocean)
  plt.colorbar()

  if extra != None:
    greens, reds = extra
    grn_x, grn_y, = greens
    red_x, red_y = reds
    plt.scatter(x=grn_x, y=grn_y, c='g', s=40)
    plt.scatter(x=red_x, y=red_y, c='r', s=40)
#  # put a blue dot at (10, 20)
#  plt.scatter([10], [20])
#  # put a red dot, size 40, at 2 locations:
#  plt.scatter(x=[3, 4], y=[5, 6], c='r', s=40)
#  # plt.plot()

  plt.savefig(name)


问题


面经


文章

微信
公众号

扫码关注公众号