python类figure()的实例源码

tools.py 文件源码 项目:learning-class-invariant-features 作者: sbelharbi 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def plot_x_y_yhat(x, y, y_hat, xsz, ysz, binz=False):
    """Plot x, y and y_hat side by side."""
    plt.close("all")
    f = plt.figure(figsize=(15, 10.8), dpi=300)
    gs = gridspec.GridSpec(1, 3)
    if binz:
        y_hat = (y_hat > 0.5) * 1.
    ims = [x, y, y_hat]
    tils = [
        "x:" + str(xsz) + "x" + str(xsz),
        "y:" + str(ysz) + "x" + str(ysz),
        "yhat:" + str(ysz) + "x" + str(ysz)]
    for n, ti in zip([0, 1, 2], tils):
        f.add_subplot(gs[n])
        if n == 0:
            plt.imshow(ims[n], cmap=cm.Greys_r)
        else:
            plt.imshow(ims[n], cmap=cm.Greys_r)
        plt.title(ti)

    return f
tutorial_helpers.py 文件源码 项目:ml_sampler 作者: facebookincubator 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def plot_roc(y_test, y_pred, label=''):
    """Compute ROC curve and ROC area"""

    fpr, tpr, _ = roc_curve(y_test, y_pred)
    roc_auc = auc(fpr, tpr)

    # Plot of a ROC curve for a specific class
    plt.figure()
    plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)
    plt.plot([0, 1], [0, 1], 'k--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver operating characteristic' + label)
    plt.legend(loc="lower right")
    plt.show()
utils.py 文件源码 项目:ML 作者: saurabhsuman47 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def plot_feat_importance(feature_names, clf, name):
    pylab.figure(num=None, figsize=(6, 5))
    coef_ = clf.coef_
    important = np.argsort(np.absolute(coef_.ravel()))
    f_imp = feature_names[important]
    coef = coef_.ravel()[important]
    inds = np.argsort(coef)
    f_imp = f_imp[inds]
    coef = coef[inds]
    xpos = np.array(list(range(len(coef))))
    pylab.bar(xpos, coef, width=1)

    pylab.title('Feature importance for %s' % (name))
    ax = pylab.gca()
    ax.set_xticks(np.arange(len(coef)))
    labels = ax.set_xticklabels(f_imp)
    for label in labels:
        label.set_rotation(90)
    filename = name.replace(" ", "_")
    pylab.savefig(os.path.join(
        CHART_DIR, "feat_imp_%s.png" % filename), bbox_inches="tight")
utils.py 文件源码 项目:ML 作者: saurabhsuman47 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def plot_feat_importance(feature_names, clf, name):
    pylab.figure(num=None, figsize=(6, 5))
    coef_ = clf.coef_
    important = np.argsort(np.absolute(coef_.ravel()))
    f_imp = feature_names[important]
    coef = coef_.ravel()[important]
    inds = np.argsort(coef)
    f_imp = f_imp[inds]
    coef = coef[inds]
    xpos = np.array(list(range(len(coef))))
    pylab.bar(xpos, coef, width=1)

    pylab.title('Feature importance for %s' % (name))
    ax = pylab.gca()
    ax.set_xticks(np.arange(len(coef)))
    labels = ax.set_xticklabels(f_imp)
    for label in labels:
        label.set_rotation(90)
    filename = name.replace(" ", "_")
    pylab.savefig(os.path.join(
        CHART_DIR, "feat_imp_%s.png" % filename), bbox_inches="tight")
word2vec_cbow.py 文件源码 项目:DeepLearning 作者: STHSF 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plot(embeddings, labels):
    assert embeddings.shape[0] >= len(labels), 'More labels than embeddings'
    pylab.figure(figsize=(15, 15))  # in inches
    for i, label in enumerate(labels):
        x, y = embeddings[i, :]
        pylab.scatter(x, y)
        pylab.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points',
                       ha='right', va='bottom')
    pylab.show()
mesa.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def CO_ratio(self,ifig,ixaxis):
        """
        plot surface C/O ratio in Figure ifig with x-axis quantity ixaxis

        Parameters
        ----------
        ifig : integer
            Figure number in which to plot
        ixaxis : string
            what quantity is to be on the x-axis, either 'time' or 'model'
            The default is 'model'
        """

        def C_O(model):
            surface_c12=model.get('surface_c12')
            surface_o16=model.get('surface_o16')
            CORatio=old_div((surface_c12*4.),(surface_o16*3.))
            return CORatio

        if ixaxis=='time':
            xax=self.get('star_age')
        elif ixaxis=='model':
            xax=self.get('model_number')
        else:
            raise IOError("ixaxis not recognised")

        pl.figure(ifig)
        pl.plot(xax,C_O(self))
mesa.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def t_lumi(self,num_frame,xax):
        """
        Luminosity evolution as a function of time or model.

        Parameters
        ----------
        num_frame : integer
            Number of frame to plot this plot into.
        xax : string
            Either model or time to indicate what is to be used on the
            x-axis

        """

        pyl.figure(num_frame)

        if xax == 'time':
            xaxisarray = self.get('star_age')
        elif xax == 'model':
            xaxisarray = self.get('model_number')
        else:
            print('kippenhahn_error: invalid string for x-axis selction. needs to be "time" or "model"')


        logLH   = self.get('log_LH')
        logLHe  = self.get('log_LHe')

        pyl.plot(xaxisarray,logLH,label='L_(H)')
        pyl.plot(xaxisarray,logLHe,label='L(He)')
        pyl.ylabel('log L')
        pyl.legend(loc=2)


        if xax == 'time':
            pyl.xlabel('t / yrs')
        elif xax == 'model':
            pyl.xlabel('model number')
mesa.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def t_surf_parameter(self, num_frame, xax):
        """
        Surface parameter evolution as a function of time or model.

        Parameters
        ----------
        num_frame : integer
            Number of frame to plot this plot into.
        xax : string
            Either model or time to indicate what is to be used on the
            x-axis

        """

        pyl.figure(num_frame)

        if xax == 'time':
            xaxisarray = self.get('star_age')
        elif xax == 'model':
            xaxisarray = self.get('model_number')
        else:
            print('kippenhahn_error: invalid string for x-axis selction. needs to be "time" or "model"')


        logL    = self.get('log_L')
        logTeff    = self.get('log_Teff')

        pyl.plot(xaxisarray,logL,'-k',label='log L')
        pyl.plot(xaxisarray,logTeff,'-k',label='log Teff')
        pyl.ylabel('log L, log Teff')
        pyl.legend(loc=2)


        if xax == 'time':
            pyl.xlabel('t / yrs')
        elif xax == 'model':
            pyl.xlabel('model number')
example.py 文件源码 项目:matplotlib_pubplots 作者: yoachim 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def example_plot1():
    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    x = np.linspace(1., 8., 30)
    ax.set_title('Title!')
    ax.plot(x, x ** 1.5, color='k', ls='solid', label='line 1')
    ax.plot(x, 20/x, color='0.50', ls='dashed', label='line 2')
    ax.set_xlabel('Time (s)')
    ax.set_ylabel('Temperature (K)')
    ax.legend(loc='upper left')
    fig.tight_layout()
    return [fig], ['example_1']

# Should make an OO example where __init__ sets up data, then methods plot it different ways. Should be able to just pass methods along...
rasta_plp_extractor.py 文件源码 项目:speech_feature_extractor 作者: ZhihaoDU 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def rasta_plp_extractor(x, sr, plp_order=0, do_rasta=True):
    spec = log_power_spectrum_extractor(x, int(sr*0.02), int(sr*0.01), 'hamming', False)
    bark_filters = int(np.ceil(freq2bark(sr//2)))
    wts = get_fft_bark_mat(sr, int(sr*0.02), bark_filters)
    '''
    plt.figure()
    plt.subplot(211)
    plt.imshow(wts)
    plt.subplot(212)
    plt.hold(True)
    for i in range(18):
        plt.plot(wts[i, :])
    plt.show()
    '''
    bark_spec = np.matmul(wts, spec)
    if do_rasta:
        bark_spec = np.where(bark_spec == 0.0, np.finfo(float).eps, bark_spec)
        log_bark_spec = np.log(bark_spec)
        rasta_log_bark_spec = rasta_filt(log_bark_spec)
        bark_spec = np.exp(rasta_log_bark_spec)
    post_spec = postaud(bark_spec, sr/2.)
    if plp_order > 0:
        lpcas = do_lpc(post_spec, plp_order)
        # lpcas = do_lpc(spec, plp_order) # just for test
    else:
        lpcas = post_spec
    return lpcas
gcd.py 文件源码 项目:Spherical-robot 作者: Evan-Zhao 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def plot(l, samp, w1, w2, cor):
    time_range = numpy.arange(0, l) * (1.0 / samp)

    pl.figure(1)
    pl.subplot(211)
    pl.plot(time_range, w1)
    pl.subplot(212)
    pl.plot(time_range, w2, c="r")
    pl.xlabel("time")

    pl.figure(2)
    pl.plot(time_range, cor)
    pl.show()
cut_chan.py 文件源码 项目:Spherical-robot 作者: Evan-Zhao 项目源码 文件源码 阅读 15 收藏 0 点赞 0 评论 0
def main():
    sampling, maxvalue, wave_data = record.record()

    # Pick out two channels for our study.
    w1, w2 = wave_data[1:3]
    nframes = w1.shape[0]

    # Cut one channel in the tail, while the other in the head,
    # to guarantee same length and first delays second.
    cut_time_len = 0.2  # second
    cut_len = int(cut_time_len * sampling)
    wp1 = w1[:-cut_len]
    wp2 = w2[cut_len:]

    # Get their reduced (amplitude) version, and
    # calculate correlation.
    a = numpy.array(wp1, dtype=numpy.double) / maxvalue
    b = numpy.array(wp2, dtype=numpy.double) / maxvalue
    delay_time = delay.fst_delay_snd(a, b, sampling)

    # Plot the channels, also the correlation.
    time_range = numpy.arange(0, nframes - cut_len)*(1.0/sampling)

    # Still shows the original signal
    pl.figure(1)
    pl.subplot(211)
    pl.plot(time_range, wp1)
    pl.subplot(212)
    pl.plot(time_range, wp2, c="r")
    pl.xlabel("time")
    pl.show()

    # Print delay
    print("Chan 1 delay chan 2 by {0}".format(delay_time))
pad_chan.py 文件源码 项目:Spherical-robot 作者: Evan-Zhao 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def main():
    sampling, maxvalue, wave_data = record.record()

    # Pick out two channels for our study.
    w1, w2 = wave_data[0:2]
    nframes = w1.shape[0]

    # Pad one channel in the head, while the other in the tail,
    # to guarantee same length.
    pad_time_len = 0.01  # second
    pad_len = int(pad_time_len * sampling)
    pad_arr = numpy.zeros(pad_len)
    wp1 = numpy.concatenate((pad_arr, w1))
    wp2 = numpy.concatenate((w2, pad_arr))

    # Get their reduced (amplitude) version, and
    # calculate correlation.
    a = numpy.array(wp1, dtype=numpy.double) / maxvalue
    b = numpy.array(wp2, dtype=numpy.double) / maxvalue
    delay_time = delay.fst_delay_snd(a, b, sampling)

    # Plot the channels, also the correlation.
    time_range = numpy.arange(0, nframes + pad_len)*(1.0/sampling)

    # Still shows the original signal
    pl.figure(1)
    pl.subplot(211)
    pl.plot(time_range, wp1)
    pl.subplot(212)
    pl.plot(time_range, wp2, c="r")
    pl.xlabel("time")
    pl.show()

    # Print delay
    print("Chan 1 delay chan 2 by {0}".format(delay_time))
visual.py 文件源码 项目:Spherical-robot 作者: Evan-Zhao 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plot_channel(audio, sampling):
    channels, nframes = audio.shape[0], audio.shape[1]
    time_range = numpy.arange(0, nframes) * (1.0 / sampling)

    for i in range(1, channels + 1):
        pl.figure(i)
        pl.plot(time_range, audio[i - 1])
        pl.xlabel("time{0}".format(i))

    pl.show()
time_alignment_plotting_tools.py 文件源码 项目:hand_eye_calibration 作者: ethz-asl 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plot_angular_velocities(title,
                            angular_velocities,
                            angular_velocities_filtered,
                            block=True):
  fig = plt.figure()

  title_position = 1.05

  fig.suptitle(title, fontsize='24')

  a1 = plt.subplot(1, 2, 1)
  a1.set_title(
      "Angular Velocities Before Filtering \nvx [red], vy [green], vz [blue]",
      y=title_position)
  plt.plot(angular_velocities[:, 0], c='r')
  plt.plot(angular_velocities[:, 1], c='g')
  plt.plot(angular_velocities[:, 2], c='b')

  a2 = plt.subplot(1, 2, 2)
  a2.set_title(
      "Angular Velocities After Filtering \nvx [red], vy [green], vz [blue]", y=title_position)
  plt.plot(angular_velocities_filtered[:, 0], c='r')
  plt.plot(angular_velocities_filtered[:, 1], c='g')
  plt.plot(angular_velocities_filtered[:, 2], c='b')

  plt.subplots_adjust(left=0.025, right=0.975, top=0.8, bottom=0.05)

  if plt.get_backend() == 'TkAgg':
    mng = plt.get_current_fig_manager()
    max_size = mng.window.maxsize()
    max_size = (max_size[0], max_size[1] * 0.45)
    mng.resize(*max_size)
  plt.show(block=block)
experiment_3_mondrian_kernel_vs_forest.py 文件源码 项目:mondrian-kernel 作者: matejbalog 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def plot_mondrian_kernel_vs_mondrian_forest(lifetime_max, res):
    """ Plots training and test set error of Mondrian kernel and Mondrian forest based on the same set of M Mondrian samples.
        This procedure takes as input a dictionary res, returned by the evaluate_all_lifetimes procedure in mondrian_kernel.py.
    """

    times = res['times']
    forest_train = res['forest_train']
    forest_test = res['forest_test']
    kernel_train = res['kernel_train']
    kernel_test = res['kernel_test']

    # set up test error plot
    fig = plt.figure(figsize=(7, 4))
    ax = fig.add_subplot('111')
    remove_chartjunk(ax)

    ax.set_xlabel('lifetime $\lambda$')
    ax.set_ylabel('relative error [\%]')
    ax.yaxis.grid(b=True, which='major', linestyle='dotted', lw=0.5, color='black', alpha=0.3)

    ax.set_xscale('log')
    ax.set_xlim((1e-8, lifetime_max))
    ax.set_ylim((0, 25))

    rasterized = False
    ax.plot(times, forest_test, drawstyle="steps-post", ls='-', lw=2, color=tableau20(6), label='"M. forest" (test)', rasterized=rasterized)
    ax.plot(times, forest_train, drawstyle="steps-post", ls='-', color=tableau20(7), label='"M. forest" (train)', rasterized=rasterized)
    ax.plot(times, kernel_test, drawstyle="steps-post", ls='-', lw=2, color=tableau20(4), label='M. kernel (test)', rasterized=rasterized)
    ax.plot(times, kernel_train, drawstyle="steps-post", ls='-', color=tableau20(5), label='M. kernel (train)', rasterized=rasterized)

    ax.legend(bbox_to_anchor=[1.15, 1.05], frameon=False)
experiment_3_mondrian_kernel_vs_forest.py 文件源码 项目:mondrian-kernel 作者: matejbalog 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def plot_kernel_vs_forest_weights(y, res):
    """ Plots the weights learned by Mondrian kernel and Mondrian forest based on the same set of M Mondrian samples.
        This procedure takes as input a dictionary res, returned by the evaluate_all_lifetimes procedure in mondrian_kernel.py.
    """

    w_forest = res['w_forest']
    w_kernel = res['w_kernel']

    # plot weights against each other
    fig1 = plt.figure(figsize=(8, 4))
    ax1 = fig1.add_subplot('121')
    ax1.set_xlabel('weights learned by "Mondrian forest"')
    ax1.set_ylabel('weights learned by Mondrian kernel')
    ax1.scatter(w_forest, w_kernel, marker='.', color=tableau20(16))
    xl = ax1.get_xlim()
    yl = ax1.get_ylim()
    lims = [
        np.min([xl, yl]),  # min of both axes
        np.max([xl, yl]),  # max of both axes
    ]
    ax1.plot(lims, lims, '--', color='black', alpha=0.75, zorder=0)
    ax1.set_xlim(xl)
    #ax1.set_ylim(yl)
    ax1.set_ylim((-60, 60))

    # plot histogram of weight values (and training targets)
    ax2 = fig1.add_subplot('122')
    ax2.set_xlabel('values')
    ax2.set_ylabel('value frequency')
    bins = np.linspace(-100, 20, 50)
    ax2.hist(w_forest, bins=bins, histtype='stepfilled', normed=True, color=tableau20(6), alpha=0.5,
             label='M. forest weights $\mathbf{w}$')
    ax2.hist(w_kernel, bins=bins, histtype='stepfilled', normed=True, color=tableau20(4), alpha=0.5,
             label='M. kernel weights $\mathbf{w}$')
    ax2.hist(y - np.mean(y), bins=bins, histtype='stepfilled', normed=True, color=tableau20(8), alpha=0.5,
             label='training targets $\mathbf{y}$')
    ax2.set_ylim((0.0, 0.16))
    ax2.legend(frameon=False, loc='upper left')

    fig1.tight_layout()
lin_cos_exp.py 文件源码 项目:geepee 作者: thangbui 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def plot_latent(model, y, plot_title=''):
    # make prediction on some test inputs
    N_test = 300
    C = model.get_hypers()['C_emission'][0, 0]
    x_test = np.linspace(-10, 8, N_test) / C
    x_test = np.reshape(x_test, [N_test, 1])
    if isinstance(model, aep.SGPSSM) or isinstance(model, vfe.SGPSSM):
        zu = model.dyn_layer.zu
    else:
        zu = model.sgp_layer.zu
    mu, vu = model.predict_f(zu)
    # mu, Su = model.dyn_layer.mu, model.dyn_layer.Su
    mf, vf = model.predict_f(x_test)
    my, vy = model.predict_y(x_test)
    # plot function
    fig = plt.figure()
    ax = fig.add_subplot(111)
    # ax.plot(x_test[:,0], kink_true(x_test[:,0]), '-', color='k')
    ax.plot(C*x_test[:,0], my[:,0], '-', color='r', label='y')
    ax.fill_between(
        C*x_test[:,0], 
        my[:,0] + 2*np.sqrt(vy[:, 0]), 
        my[:,0] - 2*np.sqrt(vy[:, 0]), 
        alpha=0.2, edgecolor='r', facecolor='r')
    ax.plot(
        y[0:model.N-1], 
        y[1:model.N], 
        'r+', alpha=0.5)
    mx, vx = model.get_posterior_x()
    ax.set_xlabel(r'$x_{t-1}$')
    ax.set_ylabel(r'$x_{t}$')
    plt.title(plot_title)
    plt.savefig('/tmp/lincos_'+plot_title+'.png')

# generate a dataset from the lincos function above
kink_exp.py 文件源码 项目:geepee 作者: thangbui 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def plot_latent(model, y, plot_title=''):
    # make prediction on some test inputs
    N_test = 200
    C = model.get_hypers()['C_emission'][0, 0]
    x_test = np.linspace(-4, 6, N_test) / C
    x_test = np.reshape(x_test, [N_test, 1])
    zu = model.dyn_layer.zu
    mu, vu = model.predict_f(zu)
    # mu, Su = model.dyn_layer.mu, model.dyn_layer.Su
    mf, vf = model.predict_f(x_test)
    my, vy = model.predict_y(x_test)
    # plot function
    fig = plt.figure()
    ax = fig.add_subplot(111)
    # ax.plot(x_test[:,0], kink_true(x_test[:,0]), '-', color='k')
    ax.plot(C*x_test[:,0], my[:,0], '-', color='r', label='y')
    ax.fill_between(
        C*x_test[:,0], 
        my[:,0] + 2*np.sqrt(vy[:, 0]), 
        my[:,0] - 2*np.sqrt(vy[:, 0]), 
        alpha=0.2, edgecolor='r', facecolor='r')
    # ax.plot(zu, mu, 'ob')
    # ax.errorbar(zu, mu, yerr=3*np.sqrt(vu), fmt='ob')
    # ax.plot(x_test[:,0], mf[:,0], '-', color='b')
    # ax.fill_between(
    #     x_test[:,0], 
    #     mf[:,0] + 2*np.sqrt(vf[:,0]), 
    #     mf[:,0] - 2*np.sqrt(vf[:,0]), 
    #     alpha=0.2, edgecolor='b', facecolor='b')
    ax.plot(
        y[0:model.N-1], 
        y[1:model.N], 
        'r+', alpha=0.5)
    mx, vx = model.get_posterior_x()
    ax.set_xlabel(r'$x_{t-1}$')
    ax.set_ylabel(r'$x_{t}$')
    ax.set_xlim([-4, 6])
    # ax.set_ylim([-7, 7])
    plt.title(plot_title)
    # plt.savefig('/tmp/kink_'+plot_title+'.pdf')
    plt.savefig('/tmp/kink_'+plot_title+'.png')
kink_exp.py 文件源码 项目:geepee 作者: thangbui 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def plot_prediction_MC(model, y_train, y_test, plot_title=''):
    T = y_test.shape[0]
    x_samples, my, vy = model.predict_forward(T, prop_mode=PROP_MC)
    T_train = y_train.shape[0]
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.plot(np.arange(T_train), y_train[:, 0], 'k+-')
    ttest = np.arange(T_train, T_train+T)
    ttest = np.reshape(ttest, [T, 1])
    loglik, ranks = compute_log_lik(np.exp(2*model.sn), y_test, my[:, :, 0].T)
    red = 0.1
    green = 0. * red
    blue = 1. - red
    color = np.array([red, green, blue]).T
    for k in np.argsort(ranks):
        ax.plot(ttest, my[:, k, 0], '-', color=color*ranks[k], alpha=0.5)
    # ax.plot(np.tile(ttest, [1, my.shape[1]]), my[:, :, 0], '-x', color='r', alpha=0.3)
    # ax.plot(np.tile(ttest, [1, my.shape[1]]), x_samples[:, :, 0], 'x', color='m', alpha=0.3)
    ax.plot(ttest, y_test, 'ro')
    ax.set_xlim([T_train-5, T_train + T])
    plt.title(plot_title)
    plt.savefig('/tmp/kink_pred_MC_'+plot_title+'.pdf')
    # plt.savefig('/tmp/kink_pred_MC_'+plot_title+'.png')


# generate a dataset from the kink function above


问题


面经


文章

微信
公众号

扫码关注公众号