python类show()的实例源码

menu.py 文件源码 项目:trajectory_tracking 作者: lmiguelvargasf 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plot_trajectory(name):
    STEPS = 600
    DELTA = 1 if name != 'linear' else 0.1
    trajectory = create_trajectory(name, STEPS)

    x = [trajectory.get_position_at(i * DELTA).x for i in range(STEPS)]
    y = [trajectory.get_position_at(i * DELTA).y for i in range(STEPS)]

    trajectory_fig, trajectory_plot = plt.subplots(1, 1)
    trajectory_plot.plot(x, y, label='trajectory', lw=3)
    trajectory_plot.set_title(name.title() + ' Trajectory', fontsize=20)
    trajectory_plot.set_xlabel(r'$x{\rm[m]}$', fontsize=18)
    trajectory_plot.set_ylabel(r'$y{\rm[m]}$', fontsize=18)
    trajectory_plot.legend(loc=0)
    trajectory_plot.grid()
    plt.show()
compare_image_entropy.py 文件源码 项目:NuGridPy 作者: NuGrid 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def compare_images(path = '.'):
     S_limit = 10.
     file_list = glob.glob(os.path.join(path, 'Abu*'))
     file_list_master = glob.glob(os.path.join(path, 'MasterAbu*'))
     file_list.sort()
     file_list_master.sort()
     S=[]
     print("Identifying images with rmq > "+'%3.1f'%S_limit)
     ierr_count = 0
     for i in range(len(file_list)):
         this_S,fimg1,fimg2 = compare_entropy(file_list[i],file_list_master[i])
         if this_S > S_limit:
              warnings.warn(file_list[i]+" and "+file_list_master[i]+" differ by "+'%6.3f'%this_S)
              ierr_count += 1
              S.append(this_S)
     if ierr_count > 0:
          print("Error: at least one image differs by more than S_limit")
          sys.exit(1)
     #print ("S: ",S)
     #plb.plot(S,'o')
     #plb.xlabel("image number")
     #plb.ylabel("modified log KL-divergence to previous image")
     #plb.show()
rasta_plp_extractor.py 文件源码 项目:speech_feature_extractor 作者: ZhihaoDU 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def postaud(x, fmax, fbtype=None):
    if fbtype is None:
        fbtype = 'bark'
    nbands = x.shape[0]
    nframes = x.shape[1]
    nfpts = nbands
    if fbtype == 'bark':
        bancfhz = bark2freq(np.linspace(0, freq2bark(fmax), nfpts))
    fsq = bancfhz * bancfhz
    ftmp = fsq + 1.6e5
    eql = ((fsq/ftmp)**2) * ((fsq + 1.44e6)/(fsq + 9.61e6))
    '''
    plt.figure()
    plt.plot(eql)
    plt.show()
    '''
    eql = eql.reshape(np.size(eql), 1)
    z = np.repeat(eql, nframes, axis=1) * x
    z = z ** (1./3.)
    y = np.vstack((z[1, :], z[1:nbands-1, :], z[nbands-2, :]))
    return y
volcanoStats.py 文件源码 项目:TSS_detection 作者: ueser 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def plot_volcano(logFC,p_val,sample_name,saveName,logFC_thresh):
    fig=pl.figure()
    ## To plot and save
    pl.scatter(logFC[(p_val>0.05)|(abs(logFC)<logFC_thresh)],-np.log10(p_val[(p_val>0.05)|(abs(logFC)<logFC_thresh)]),color='blue',alpha=0.5);
    pl.scatter(logFC[(p_val<0.05)&(abs(logFC)>logFC_thresh)],-np.log10(p_val[(p_val<0.05)&(abs(logFC)>logFC_thresh)]),color='red');
    pl.hlines(-np.log10(0.05),min(logFC),max(logFC))
    pl.vlines(-logFC_thresh,min(-np.log10(p_val)),max(-np.log10(p_val)))
    pl.vlines(logFC_thresh,min(-np.log10(p_val)),max(-np.log10(p_val)))
    pl.xlim(-3,3)
    pl.xlabel('Log Fold Change')
    pl.ylabel('-log10(p-value)')
    pl.savefig(saveName)
    pl.close(fig)


# def plot_histograms(df_peaks,pntr_list):
#
#     for pntr in pntr_list:
#         colName =pntr[2]+'_Intragenic_position'
#         pl.hist(df_peaks[colName])
#         pl.xlabel(colName)
#         pl.ylabel()
#         pl.show()
lms.py 文件源码 项目:Spherical-robot 作者: Evan-Zhao 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def plot(l, x1, x2, y, e):
    # Plot
    time_range = numpy.arange(0, l)
    pl.figure(1)
    pl.subplot(221)
    pl.plot(time_range, x1)
    pl.title("Input signal")
    pl.subplot(222)
    pl.plot(time_range, x2, c="r")
    pl.plot(time_range, y, c="b")
    pl.title("Reference signal")
    pl.subplot(223)
    pl.plot(time_range, e, c="r")
    pl.title("Noise")
    pl.xlabel("time")
    pl.show()
visual.py 文件源码 项目:Spherical-robot 作者: Evan-Zhao 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def make_fft_graph(fft, corre):
    fft_np = numpy.array(fft).swapaxes(0, 1).swapaxes(1, 2)
    channel_N, freq_N, sample_N = fft_np.shape
    if (channel_N > 6):  # We don't have space for more than 6 channels
        return
    fig, axes = plt.subplots(2, 3)
    fig.subplots_adjust(hspace=0.3, wspace=0.05)
    for ax, mat, i in zip(axes.flat, fft_np, range(1, channel_N + 1)):
        fft_abs = numpy.abs(mat)
        fft_less_row = fft_abs[0::20]
        n = freq_N / 20
        fft_sqr = numpy.repeat(fft_less_row, int(n / sample_N)).reshape([n, n])
        ax.matshow(fft_sqr, cmap='viridis')
        plt.xlabel('time')
        plt.ylabel('freq')
        ax.set_title('Channel {0}'.format(i))
    plt.show()
    print("Plotted.")
gpr_alpha_examples.py 文件源码 项目:geepee 作者: thangbui 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def run_regression_1D_aep_two_layers():
    np.random.seed(42)

    print "create dataset ..."
    Xtrain, ytrain, Xtest, ytest = create_dataset()

    alpha = 1 # other alpha is not valid here
    M = 20
    model = aep.SDGPR(Xtrain, ytrain, M, hidden_sizes=[2])
    model.optimise(method='L-BFGS-B', alpha=1, maxiter=5000, disp=False)
    my, vy = model.predict_y(Xtest)
    my = np.reshape(my, ytest.shape)
    vy = np.reshape(vy, ytest.shape)
    rmse = np.sqrt(np.mean((my - ytest)**2))
    ll = np.mean(-0.5 * np.log(2 * np.pi * vy) - 0.5 * (ytest - my)**2 / vy)
    nlml, _ = model.objective_function(model.get_hypers(), Xtrain.shape[0], alpha)
    print 'alpha=%.3f, train ml=%3f, test rmse=%.3f, ll=%.3f' % (alpha, nlml, rmse, ll)
    # plot(model, Xtrain, ytrain)
    # plt.show()

    # should produce something like this
    # alpha=1.000, train ml=-51.385404, test rmse=0.168, ll=0.311
gpr_alpha_examples.py 文件源码 项目:geepee 作者: thangbui 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def run_regression_1D_aep_two_layers_stoc():
    np.random.seed(42)

    print "create dataset ..."
    Xtrain, ytrain, Xtest, ytest = create_dataset()

    alpha = 1 # other alpha is not valid here
    M = 20
    model = aep.SDGPR(Xtrain, ytrain, M, hidden_sizes=[2])
    model.optimise(method='adam', alpha=1, maxiter=5000, disp=False)
    my, vy = model.predict_y(Xtest)
    my = np.reshape(my, ytest.shape)
    vy = np.reshape(vy, ytest.shape)
    rmse = np.sqrt(np.mean((my - ytest)**2))
    ll = np.mean(-0.5 * np.log(2 * np.pi * vy) - 0.5 * (ytest - my)**2 / vy)
    nlml, _ = model.objective_function(model.get_hypers(), Xtrain.shape[0], alpha)
    print 'alpha=%.3f, train ml=%3f, test rmse=%.3f, ll=%.3f' % (alpha, nlml, rmse, ll)
    # plot(model, Xtrain, ytrain)
    # plt.show()

    # should produce something like this
    # alpha=1.000, train ml=-69.444086, test rmse=0.170, ll=0.318
plots.py 文件源码 项目:nmmn 作者: rsnemmen 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def plot(param, show = 1):

    """Returns the plot of spectrum as a pyplot object or plot it on the screen
    Keyword arguments:

    param -- Output spectrum file
    show  -- Optional, plot the spectrum on the screen. Enabled by default. 
    """

    s = sed.SED()
    s.grmonty(param)
    plt = pylab.plot(s.lognu, s.ll)
    if show == 1:
        pylab.show()
    else:
        return plt
exp_utils.py 文件源码 项目:gcForest 作者: kingfengji 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def plot_confusion_matrix(cm, label_list, title='Confusion matrix', cmap=None):
    from matplotlib import pylab
    cm = np.asarray(cm, dtype=np.float32)
    for i, row in enumerate(cm):
        cm[i] = cm[i] / np.sum(cm[i])
    #import matplotlib.pyplot as plt
    #plt.ion()
    pylab.clf()
    pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=1.0)
    ax = pylab.axes()
    ax.set_xticks(range(len(label_list)))
    ax.set_xticklabels(label_list, rotation='vertical')
    ax.xaxis.set_ticks_position('bottom')
    ax.set_yticks(range(len(label_list)))
    ax.set_yticklabels(label_list)
    pylab.title(title)
    pylab.colorbar()
    pylab.grid(False)
    pylab.xlabel('Predicted class')
    pylab.ylabel('True class')
    pylab.grid(False)
    pylab.savefig('test.jpg')
    pylab.show()
main.py 文件源码 项目:classical-machine-learning-algorithm 作者: xwzhong 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def plotRes(pre, real, test_x,l):
    s = set(pre)
    col = ['r','b','g','y','m']
    fig = plt.figure()

    ax = fig.add_subplot(111)
    for i in range(0, len(s)):
        index1 = pre == i
        index2 = real == i
        x1 = test_x[index1, :]
        x2 = test_x[index2, :]
        ax.scatter(x1[:,0],x1[:,1],color=col[i],marker='v',linewidths=0.5)
        ax.scatter(x2[:,0],x2[:,1],color=col[i],marker='.',linewidths=12)
    plt.title('learning rating='+str(l))
    plt.legend(('c1:predict','c1:true',\
                'c2:predict','c2:true',
                'c3:predict','c3:true',
                'c4:predict','c4:true',
                'c5:predict','c5:true'), shadow = True, loc = (0.01, 0.4))
    plt.show()
plot_matrix.py 文件源码 项目:prototype 作者: chutsu 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def __init__(self, data, **kwargs):
        # Settings
        self.show_ticks = kwargs.get("show_ticks", False)
        self.show_values = kwargs.get("show_values", False)
        self.show = kwargs.get("show", False)
        self.labels = kwargs.get("labels", None)

        # Setup plot
        self.rows, self.cols = data.shape
        self.fig = plt.figure()
        self.plt_ax = self.fig.add_subplot(111)
        self.cov_ax = self.plt_ax.matshow(np.array(data))

        # Covariance matrix labels
        self.label_values = self._add_data_labels(data)
        self._add_axis_labels(data)

        # Color bar
        self.color_bar = self.fig.colorbar(self.cov_ax)

        # Show plot
        if self.show:
            plt.show(block=False)
test_plot_error.py 文件源码 项目:prototype 作者: chutsu 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_plot_error_ellipse(self):
        # Generate random data
        x = np.random.normal(0, 1, 300)
        s = np.array([2.0, 2.0])
        y1 = np.random.normal(s[0] * x)
        y2 = np.random.normal(s[1] * x)
        data = np.array([y1, y2])

        # Calculate covariance and plot error ellipse
        cov = np.cov(data)
        plot_error_ellipse([0.0, 0.0], cov)

        debug = False
        if debug:
            plt.scatter(data[0, :], data[1, :])
            plt.xlim([-8, 8])
            plt.ylim([-8, 8])
            plt.show()
        plt.clf()
test_msckf.py 文件源码 项目:prototype 作者: chutsu 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_augment_state(self):
        self.msckf.augment_state()

        N = self.msckf.N()
        self.assertTrue(self.msckf.P_cam is not None)
        self.assertTrue(self.msckf.P_imu_cam is not None)
        self.assertEqual(self.msckf.P_cam.shape, (N * 6, N * 6))
        self.assertEqual(self.msckf.P_imu_cam.shape, (15, N * 6))
        self.assertEqual(self.msckf.N(), 2)

        self.assertTrue(np.array_equal(self.msckf.cam_states[0].q_CG,
                                       self.msckf.ext_q_CI))
        self.assertEqual(self.msckf.counter_frame_id, 2)

        # Plot matrix
        # debug = True
        debug = False
        if debug:
            ax = plt.subplot(111)
            ax.matshow(self.msckf.P())
            plt.show()
test_imu_state.py 文件源码 项目:prototype 作者: chutsu 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_F(self):
        w_hat = np.array([1.0, 2.0, 3.0])
        q_hat = np.array([0.0, 0.0, 0.0, 1.0])
        a_hat = np.array([1.0, 2.0, 3.0])
        w_G = np.array([0.1, 0.1, 0.1])

        F = self.imu_state.F(w_hat, q_hat, a_hat, w_G)

        # -- First row --
        self.assertTrue(np_equal(F[0:3, 0:3], -skew(w_hat)))
        self.assertTrue(np_equal(F[0:3, 3:6], -np.ones((3, 3))))
        # -- Third Row --
        self.assertTrue(np_equal(F[6:9, 0:3], dot(-C(q_hat).T, skew(a_hat))))
        self.assertTrue(np_equal(F[6:9, 6:9], -2.0 * skew(w_G)))
        self.assertTrue(np_equal(F[6:9, 9:12], -C(q_hat).T))
        self.assertTrue(np_equal(F[6:9, 12:15], -skewsq(w_G)))
        # -- Fifth Row --
        self.assertTrue(np_equal(F[12:15, 6:9], np.ones((3, 3))))

        # Plot matrix
        if self.debug:
            ax = plt.subplot(111)
            ax.matshow(F)
            plt.show()
test_imu_state.py 文件源码 项目:prototype 作者: chutsu 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_G(self):
        q_hat = np.array([0.0, 0.0, 0.0, 1.0]).reshape((4, 1))
        G = self.imu_state.G(q_hat)

        # -- First row --
        self.assertTrue(np_equal(G[0:3, 0:3], -np.ones((3, 3))))
        # -- Second row --
        self.assertTrue(np_equal(G[3:6, 3:6], np.ones((3, 3))))
        # -- Third row --
        self.assertTrue(np_equal(G[6:9, 6:9], -C(q_hat).T))
        # -- Fourth row --
        self.assertTrue(np_equal(G[9:12, 9:12], np.ones((3, 3))))

        # Plot matrix
        if self.debug:
            ax = plt.subplot(111)
            ax.matshow(G)
            plt.show()
test_imu_state.py 文件源码 项目:prototype 作者: chutsu 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_J(self):
        # Setup
        cam_q_CI = np.array([0.0, 0.0, 0.0, 1.0])
        cam_p_IC = np.array([1.0, 1.0, 1.0])
        q_hat_IG = np.array([0.0, 0.0, 0.0, 1.0])
        N = 1
        J = self.imu_state.J(cam_q_CI, cam_p_IC, q_hat_IG, N)

        # Assert
        C_CI = C(cam_q_CI)
        C_IG = C(q_hat_IG)
        # -- First row --
        self.assertTrue(np_equal(J[0:3, 0:3], C_CI))
        # -- Second row --
        self.assertTrue(np_equal(J[3:6, 0:3], skew(dot(C_IG.T, cam_p_IC))))
        # -- Third row --
        self.assertTrue(np_equal(J[3:6, 12:15], I(3)))

        # Plot matrix
        if self.debug:
            ax = plt.subplot(111)
            ax.matshow(J)
            plt.show()
test_camera_model.py 文件源码 项目:prototype 作者: chutsu 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def test_project(self):
        # Load points
        points_file = join(test.TEST_DATA_PATH, "house/house.p3d")
        points = np.loadtxt(points_file).T

        # Setup camera
        K = np.eye(3)
        R = np.eye(3)
        t = np.array([0, 0, 0])
        camera = PinholeCameraModel(320, 240, K)
        x = camera.project(points, R, t)

        # Assert
        self.assertEqual(x.shape, (3, points.shape[1]))
        self.assertTrue(np.all(x[2, :] == 1.0))

        # Plot projection
        debug = False
        # debug = True
        if debug:
            plt.figure()
            plt.plot(x[0], x[1], 'k. ')
            plt.show()
dataset.py 文件源码 项目:prototype 作者: chutsu 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plot(self, track, track_cam_states, estimates):
        plt.figure()

        # Feature
        feature = T_global_camera * track.ground_truth
        plt.plot(feature[0], feature[1],
                 marker="o", color="red", label="feature")

        # Camera states
        for cam_state in track_cam_states:
            pos = T_global_camera * cam_state.p_G
            plt.plot(pos[0], pos[1],
                     marker="o", color="blue", label="camera")

        # Estimates
        for i in range(len(estimates)):
            cam_state = track_cam_states[i]
            cam_pos = T_global_camera * cam_state.p_G
            estimate = (T_global_camera * estimates[i]) + cam_pos
            plt.plot(estimate[0], estimate[1],
                     marker="o", color="green")

        plt.legend(loc=0)
        plt.show()
backtest_base.py 文件源码 项目:lquant 作者: squall1988 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def summary(self):
        """
        This function is used to summary the result.
        If you want calculate some other indicator, you can add them here.
        :return:
        """
        if self._analysis is not None:
            self._analysis(self.asset_dict)
        # for x in self.asset_dict:
        #     self.get_benchmark()
        #     asset_return = (self.asset_dict[x] - self._base_fund) / self._base_fund
        #     asset_return = asset_return.add_prefix(str(x) + "_")
        #     print asset_return
        #     result = pd.merge(asset_return, self._benchmark_data,
        #                       left_index=True, right_index=True, how="inner")
        #     max_return = self.get_max_return(x, begin=self._begin_date, end=self._end_date)
        #     print max_return
        #     # print result
        #     # if self._analysis is not None:
        #     #     self._analysis(result)
        #     # result.plot()
        #     # plt.show()
seismograms.py 文件源码 项目:seis_tools 作者: romaguir 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def x_corr(a,b,center_time_s=1000.0,window_len_s=50.0,plot=True):

      center_index = int(center_time_s/a.dt)
      window_index = int(window_len_s/(a.dt))
      print "center_index is", center_index
      print "window_index is", window_index

      t1 = a.trace_x[(center_index - window_index) : (center_index + window_index)]
      t2 = b.trace_x[(center_index - window_index) : (center_index + window_index)]
      print t1

      time_window = np.linspace((-window_len_s/2.0), (window_len_s/2), len(t1))
      #print time_window

      #plt.plot(time_window, t1)
      #plt.plot(time_window, t2)
      #plt.show()

      x_corr_time = correlate(t1, t2)
      delay = (np.argmax(x_corr_time) - (len(x_corr_time)/2) ) * a.dt
      #print "the delay is ", delay
      return delay
Drawing.py 文件源码 项目:options 作者: mcmachado 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plotLine(self, x_vals, y_vals, x_label, y_label, title, filename=None):
        plt.clf()

        plt.xlabel(x_label)
        plt.xlim(((min(x_vals) - 0.5), (max(x_vals) + 0.5)))
        plt.ylabel(y_label)
        plt.ylim(((min(y_vals) - 0.5), (max(y_vals) + 0.5)))

        plt.title(title)
        plt.plot(x_vals, y_vals, c='k', lw=2)
        #plt.plot(x_vals, len(x_vals) * y_vals[0], c='r', lw=2)

        if filename == None:
            plt.show()
        else:
            plt.savefig(self.outputPath + filename)
utils.py 文件源码 项目:Building-Machine-Learning-Systems-With-Python-Second-Edition 作者: PacktPublishing 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def plot_confusion_matrix(cm, genre_list, name, title):
    pylab.clf()
    pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=1.0)
    ax = pylab.axes()
    ax.set_xticks(range(len(genre_list)))
    ax.set_xticklabels(genre_list)
    ax.xaxis.set_ticks_position("bottom")
    ax.set_yticks(range(len(genre_list)))
    ax.set_yticklabels(genre_list)
    pylab.title(title)
    pylab.colorbar()
    pylab.grid(False)
    pylab.show()
    pylab.xlabel('Predicted class')
    pylab.ylabel('True class')
    pylab.grid(False)
    pylab.savefig(
        os.path.join(CHART_DIR, "confusion_matrix_%s.png" % name), bbox_inches="tight")
kNN.py 文件源码 项目:statistical-learning-methods-note 作者: ysh329 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def plotKChart(self, misClassDict, saveFigPath):
        kList = []
        misRateList = []
        for k, misClassNum in misClassDict.iteritems():
            kList.append(k)
            misRateList.append(1.0 - 1.0/k*misClassNum)

        fig = plt.figure(saveFigPath)
        plt.plot(kList, misRateList, 'r--')
        plt.title(saveFigPath)
        plt.xlabel('k Num.')
        plt.ylabel('Misclassified Rate')
        plt.legend(saveFigPath)
        plt.grid(True)
        plt.savefig(saveFigPath)
        plt.show()

################################### PART3 TEST ########################################
# ??
backtest.py 文件源码 项目:marketcrush 作者: basaks 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def backtest(config_file, day_trade):
    cfg = config.Config(config_file)
    cfg.day_trade = day_trade
    dfs = load_data(config_file)
    trender = strategies[cfg.strategy](**cfg.strategy_parameters)
    res = []
    for df in dfs:
        res.append(trender.backtest(data_frame=df))
    final_panel = pd.Panel({os.path.basename(p['path']): df for p, df in
                            zip(cfg.data_path, res)})
    profit_series = final_panel.sum(axis=0)['total_profit'].cumsum()
    final_panel.to_excel(cfg.output_file)

    if cfg.show:
        profit_series.plot()
        plt.xlabel('Time')
        plt.ylabel('Profit')
        plt.legend('Profit')
        plt.show()
jianshu.py 文件源码 项目:geetest 作者: zr777 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def get_captcha_image(filename):

        screenshot = driver.get_screenshot_as_png()
        screenshot = Image.open(BytesIO(screenshot))
        # screenshot.show()

        captcha_el = driver.find_element_by_class_name("gt_box")
        location = captcha_el.location
        size = captcha_el.size
        left = location['x']
        top = location['y']
        right = location['x'] + size['width']
        bottom = location['y'] + size['height']
        box = (left, top, right, bottom)
        print(box)
        if box[0] == 0:
            raise(Exception('======='))
        captcha_image = screenshot.crop(box)
        captcha_image.save(filename)  # "%s.png" % uuid.uuid4().hex
        print(u'????')
plot.py 文件源码 项目:DeepMonster 作者: olimastro 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def show_samples(y, ndim, nb=10, cmap=''):
    if ndim == 4:
        for i in range(nb**2):
            plt.subplot(nb, nb, i+1)
            plt.imshow(y[i], cmap=cmap, interpolation='none')
            plt.axis('off')

    else:
        x = y[0]
        y = y[1]
        plt.figure(0)
        for i in range(10):
            plt.subplot(2, 5, i+1)
            plt.imshow(x[i], cmap=cmap, interpolation='none')
            plt.axis('off')

        plt.figure(1)
        for i in range(10):
            plt.subplot(2, 5, i+1)
            plt.imshow(y[i], cmap=cmap, interpolation='none')
            plt.axis('off')

    plt.show()
fit_logic_standalone.py 文件源码 项目:qudi 作者: Ulm-IQO 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def fit_data():
    data=np.loadtxt('data.dat')
    print(data)
    params = dict()
    params["c"] = {"min" : -np.inf,"max" : np.inf}
    result = qudi_fitting.make_lorentzian_fit(axis=data[:,0], data=data[:,3], add_parameters=params)
    print(result.fit_report())
    plt.plot(data[:,0],-data[:,3]+2,"b-o",label="data mean")
#    plt.plot(data[:,0],data[:,1],label="data")
#    plt.plot(data[:,0],data[:,2],label="data")
    plt.plot(data[:,0],-result.best_fit+2,"r-",linewidth=2.,label="fit")
#    plt.plot(data[:,0],result.init_fit,label="init")
    plt.xlabel("time (ns)")
    plt.ylabel("polarization transfer (arb. u.)")
    plt.legend(loc=1)
#    plt.savefig("pol20_24repetition_pol.pdf")
#    plt.savefig("pol20_24repetition_pol.png")
    plt.show()
    savedata=[[data[ii,0],-data[ii,3]+2,-result.best_fit[ii]+2] for ii in range(len(data[:,0]))]
    np.savetxt("pol_data_fit.csv",savedata)
#    print(result.params)

    print(result.params)
tutorial_helpers.py 文件源码 项目:ml_sampler 作者: facebookincubator 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def plot_roc(y_test, y_pred, label=''):
    """Compute ROC curve and ROC area"""

    fpr, tpr, _ = roc_curve(y_test, y_pred)
    roc_auc = auc(fpr, tpr)

    # Plot of a ROC curve for a specific class
    plt.figure()
    plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)
    plt.plot([0, 1], [0, 1], 'k--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver operating characteristic' + label)
    plt.legend(loc="lower right")
    plt.show()
utils.py 文件源码 项目:genrec 作者: kkanellis 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def plot_confusion_matrix(cm, plot_title, filename, genres=None):
    if not genres:
        genres = GENRES

    pylab.clf()
    pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=100.0)

    axes = pylab.axes()
    axes.set_xticks(range(len(genres)))
    axes.set_xticklabels(genres, rotation=45)

    axes.set_yticks(range(len(genres)))
    axes.set_yticklabels(genres)
    axes.xaxis.set_ticks_position("bottom")

    pylab.title(plot_title, fontsize=14)
    pylab.colorbar()
    pylab.xlabel('Predicted class', fontsize=12)
    pylab.ylabel('Correct class', fontsize=12)
    pylab.grid(False)
    #pylab.show()
    pylab.savefig(os.path.join(PLOTS_DIR, "cm_%s.eps" % filename), bbox_inches="tight")


问题


面经


文章

微信
公众号

扫码关注公众号