python类imread()的实例源码

calibration_camera.py 文件源码 项目:SelfDrivingCar 作者: aguijarro 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def get_points():

    # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
    objp = np.zeros((6*8,3), np.float32)
    objp[:,:2] = np.mgrid[0:8, 0:6].T.reshape(-1 , 2)

    # Arrays to store object points and image points from all the images.
    objpoints = [] # 3d points in real world space
    imgpoints = [] # 2d points in image plane.

    # Make a list of calibration images
    images = glob.glob('calibration_wide/GO*.jpg')

    # Step through the list and search for chessboard corners
    for idx, fname in enumerate(images):
        img = cv2.imread(fname)
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

        # Find the chessboard corners
        ret, corners = cv2.findChessboardCorners(gray, (8,6), None)

        # If found, add object points, image points
        if ret == True:
            objpoints.append(objp)
            imgpoints.append(corners)

            # Draw and display the corners
            cv2.drawChessboardCorners(img, (8,6), corners, ret)
            #write_name = 'corners_found'+str(idx)+'.jpg'
            #cv2.imwrite(write_name, img)
            cv2.imshow('img', img)
            cv2.waitKey(500)

    cv2.destroyAllWindows()
    return objpoints, imgpoints
project_v2.py 文件源码 项目:SelfDrivingCar 作者: aguijarro 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def main():
    # reading in an image
    #image = (mpimg.imread('test_images/solidWhiteRight.jpg') * 255).astype('uint8')
    #image = (mpimg.imread('test_images/solidWhiteCurve.jpg') * 255).astype('uint8')
    #image = (mpimg.imread('test_images/solidYellowCurve.jpg') * 255).astype('uint8')
    #image = (mpimg.imread('test_images/solidYellowCurve2.jpg') * 255).astype('uint8')
    #image = (mpimg.imread('test_images/solidYellowLeft.jpg') * 255).astype('uint8')
    image = (mpimg.imread('test_images/whiteCarLaneSwitch.jpg') * 255).astype('uint8')
    processImage = process_image(image)
    plt.imshow(processImage)
    plt.show()

    # Make video
    white_output = 'white.mp4'
    clip1 = VideoFileClip("solidWhiteRight.mp4")
    white_clip = clip1.fl_image(process_image) #NOTE: this function expects color images!!
    white_clip.write_videofile(white_output, audio=False)

    # Make video
    yellow_output = 'yellow.mp4'
    clip2 = VideoFileClip('solidYellowLeft.mp4')
    yellow_clip = clip2.fl_image(process_image)
    yellow_clip.write_videofile(yellow_output, audio=False)
run_FCN.py 文件源码 项目:semantic-segmentation 作者: albertbuchard 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def save_rotated_test_images():
    #
    #   DESCRIPTION 
    #       This function rotates the test image and create four patches of 400 * 400
    #       It then saves those 32 images in the test_set_images folder of each image 
    #   
    #

    # Loop over all images 
    for i in range(1,51):
        # Load image
        image = mpimg.imread('test_set_images/test_'+str(i)+'/test_'+str(i)+'.png')
        rotations = mk_rotations(image)
        rota_count = 0
        for rotation in rotations:
            patches = make_4_patch(rotation)
            patch_count = 0
            for patch in patches:
                patch = format_image(patch)
                Image.fromarray(patch).save('test_set_images/test_'+str(i)+'/Test_'+str(i)+'_rota'+str(rota_count)+'_patch'+str(patch_count)+'.png')
                patch_count += 1
            rota_count+=1


        print('Writing image ',i)
Training_run.py 文件源码 项目:semantic-segmentation 作者: albertbuchard 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def extract_labels(filename, num_images):
    gt_imgs = []
    for i in range(1, num_images+1):
        imageid = 'training_big/Truth/satImage_'+ '%.3d' % i
        for j in range(8):
            image_filename = imageid + "_rota"+str(np.int(j))+".png"
            if os.path.isfile(image_filename):

                img = mpimg.imread(image_filename)

                gt_imgs.append(img)
            else:
                print ('File ' + image_filename + ' does not exist')

    num_images = len(gt_imgs)
    gt_patches = [img_crop(gt_imgs[i], IMG_PATCH_SIZE, IMG_PATCH_SIZE) for i in range(num_images)]
    data = np.asarray([gt_patches[i][j] for i in range(len(gt_patches)) for j in range(len(gt_patches[i]))])
    labels = np.asarray([value_to_class(np.mean(data[i])) for i in range(len(data))])
    # Convert to dense 1-hot representation.
    return labels.astype(np.float32)

##Return the error rate based on dense predictions and 1-hot labels.
utils.py 文件源码 项目:canshi 作者: hungsing92 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def load_stereo_pairs(imL_files, imR_files, **kwargs):
    """Helper method to read stereo image pairs."""
    StereoPair = namedtuple('StereoPair', 'left, right')

    impairs = []
    for imfiles in zip(imL_files, imR_files):
        # Convert to uint8 and BGR for OpenCV if requested
        imformat = kwargs.get('format', '')
        if imformat is 'cv2':
            imL = np.uint8(mpimg.imread(imfiles[0]) * 255)
            imR = np.uint8(mpimg.imread(imfiles[1]) * 255)

            # Convert RGB to BGR
            if len(imL.shape) > 2:
                imL = imL[:, :, ::-1]
                imR = imR[:, :, ::-1]

        else:
            imL = mpimg.imread(imfiles[0])
            imR = mpimg.imread(imfiles[1])

        impairs.append(StereoPair(imL, imR))

    return impairs
plot_generator.py 文件源码 项目:terra 作者: UW-Hydro 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def create_thumbnail(infile, thumbfile,
                     width=300, height=300,
                     cx=0.5, cy=0.5, border=4):
    baseout, extout = op.splitext(thumbfile)

    im = image.imread(infile)
    rows, cols = im.shape[:2]
    x0 = int(cx * cols - .5 * width)
    y0 = int(cy * rows - .5 * height)
    xslice = slice(x0, x0 + width)
    yslice = slice(y0, y0 + height)
    thumb = im[yslice, xslice]
    thumb[:border, :, :3] = thumb[-border:, :, :3] = 0
    thumb[:, :border, :3] = thumb[:, -border:, :3] = 0

    dpi = 100
    fig = plt.figure(figsize=(width / dpi, height / dpi), dpi=dpi)

    ax = fig.add_axes([0, 0, 1, 1], aspect='auto',
                      frameon=False, xticks=[], yticks=[])
    ax.imshow(thumb, aspect='auto', resample=True,
              interpolation='bilinear')
    fig.savefig(thumbfile, dpi=dpi)
    return fig
utils.py 文件源码 项目:MV3D-Pytorch 作者: dongwoohhh 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def load_stereo_pairs(imL_files, imR_files, **kwargs):
    """Helper method to read stereo image pairs."""
    StereoPair = namedtuple('StereoPair', 'left, right')

    impairs = []
    for imfiles in zip(imL_files, imR_files):
        # Convert to uint8 and BGR for OpenCV if requested
        imformat = kwargs.get('format', '')
        if imformat is 'cv2':
            imL = np.uint8(mpimg.imread(imfiles[0]) * 255)
            imR = np.uint8(mpimg.imread(imfiles[1]) * 255)

            # Convert RGB to BGR
            if len(imL.shape) > 2:
                imL = imL[:, :, ::-1]
                imR = imR[:, :, ::-1]

        else:
            imL = mpimg.imread(imfiles[0])
            imR = mpimg.imread(imfiles[1])

        impairs.append(StereoPair(imL, imR))

    return impairs
graph_tools.py 文件源码 项目:tools 作者: kastnerkyle 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def graphviz_plot(graph, fname="tmp_dotgraph.dot", show=True):
    if os.path.exists(fname):
        print("WARNING: Overwriting existing file {} for new plots".format(fname))
    f = open(fname,'w')
    f.writelines('digraph G {\nnode [width=.3,height=.3,shape=octagon,style=filled,color=skyblue];\noverlap="false";\nrankdir="LR";\n')
    for i in graph:
        for j in graph[i]:
            s= '      '+ i
            s +=  ' -> ' +  j + ' [label="' + str(graph[i][j]) + '"]'
            s+=';\n'
            f.writelines(s)
    f.writelines('}')
    f.close()
    graphname = fname.split(".")[0] + ".png"
    pe(["dot", "-Tpng", fname, "-o", graphname])

    if show:
        plt.imshow(mpimg.imread(graphname))
        plt.show()
BATS.py 文件源码 项目:BATS-Bayesian-Adaptive-Trial-Simulator 作者: ContaTP 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def exportPlot(self):

        # Combine to one 
        self.plot_output_file, filetype = QtWidgets.QFileDialog.getSaveFileName(self, "Export Plots To...", "", "PDF(*.pdf)")
        if filetype == "PDF(*.pdf)":

            pdf = matplotlib.backends.backend_pdf.PdfPages(self.plot_output_file)
            for key in list(self.plot_file.keys()):

                for i in range(1, len(self.plot_file[key])):

                    fig = plt.figure()
                    img = mpimg.imread(self.plot_file[key][i])
                    plt.imshow(img)
                    plt.axis('off')
                    pdf.savefig(fig)
                    plt.clf()
                    plt.close()

            pdf.close()
            sys.stdout.write("Output plot files to %s"%(self.plot_output_file))      
            self.exportPlot_flag = 1
framework.py 文件源码 项目:yt 作者: yt-project 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def run(self):
        if self.args is None:
            args = []
        else:
            args = self.args
        if self.kwargs is None:
            kwargs = {}
        else:
            kwargs = self.kwargs
        comp_imgs = []
        tmpdir = tempfile.mkdtemp()
        image_prefix = os.path.join(tmpdir,"test_img")
        self.image_func(image_prefix, *args, **kwargs)
        imgs = glob.glob(image_prefix+"*")
        assert(len(imgs) > 0)
        for img in imgs:
            img_data = mpimg.imread(img)
            os.remove(img)
            comp_imgs.append(zlib.compress(img_data.dumps()))
        return comp_imgs
bulb_sine.py 文件源码 项目:poke_semantics 作者: apilaskowski 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def imscatter(x, y, image, ax=None, zoom=1):
    if ax is None:
        ax = plt.gca()
    try:
        image = plt.imread(image)
    except TypeError:
        # Likely already an array...
        pass
    im = OffsetImage(image, zoom=zoom)
    x, y = np.atleast_1d(x, y)
    artists = []
    for x0, y0 in zip(x, y):
        ab = AnnotationBbox(im, (x0, y0), xycoords='data', frameon=False)
        artists.append(ax.add_artist(ab))
    ax.update_datalim(np.column_stack([x, y]))
    ax.autoscale()
    return artists
cnn_olivettifaces.py 文件源码 项目:learning-tensorflow 作者: Salon-sai 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plot(error_index, dataset_path):
    img = mpimg.imread(dataset_path)
    plt.imshow(img)
    currentAxis = plt.gca()
    for index in error_index:
        row = index // 2
        column = index % 2
        currentAxis.add_patch(
            patches.Rectangle(
                xy=(
                     47 * 9 if column == 0 else 47 * 19,
                     row * 57
                    ),
                width=47,
                height=57,
                linewidth=1,
                edgecolor='r',
                facecolor='none'
            )
    )
    fig = plt.gcf()
    fig.set_size_inches(11.40, 9.42)
    plt.savefig("fig_result.png", bbox_inches="tight", dpi=100)
    plt.show()
utils.py 文件源码 项目:mxnet_workshop 作者: NervanaSystems 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def print_images(output, img_path):
    seg_path = img_path.replace("jpg", "png")

    out_img = np.uint8(np.squeeze(output.asnumpy().argmax(axis=1)))
    out_img = Image.fromarray(out_img)
    out_img.putpalette(getpallete(256))
    out_img.save(seg_path)

    # Display input
    print "Input Image:"
    img = mpimg.imread(img_path)
    plt.imshow(img)
    plt.show()

    # Display output
    print "Output Image:"
    img_out = mpimg.imread(seg_path)
    plt.imshow(img_out)
    plt.show()
cached_image.py 文件源码 项目:docker-iot-calendar 作者: masterandrey 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def by_file_name(self, image_file_name):
        """
        :param image_file_name:
        :return:
            image from file (or from cache)
            empty image if image_file_name empty or file does not exists
        """

        if not image_file_name:
            return self._empty
        if image_file_name not in self._cache:
            try:
                self._cache[image_file_name] = mpimg.imread(image_file_name)
            except Exception as e:
                print('#'*5, ' Error reading image from {}:\n{}'.format(image_file_name, e))
                return self._empty
        return self._cache[image_file_name]
model_baseline1.py 文件源码 项目:road-segmentation 作者: paramoecium 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def extract_data(filename, num_images):
    """Extract the images into a 4D tensor [image index, y, x, channels].
    Values are rescaled from [0, 255] down to [-0.5, 0.5].
    """
    imgs = []
    for i in range(1, num_images + 1):
        imageid = "satImage_%.3d" % i
        image_filename = filename + imageid + ".png"
        if os.path.isfile(image_filename):
            print('Loading ' + image_filename)
            img = mpimg.imread(image_filename)
            imgs.append(img)
        else:
            print('File ' + image_filename + ' does not exist')

    num_images = len(imgs)

    img_patches = [img_crop(imgs[i], IMG_PATCH_SIZE, IMG_PATCH_SIZE) for i in range(num_images)]
    data = [img_patches[i][j] for i in range(len(img_patches)) for j in range(len(img_patches[i]))]

    return numpy.asarray(data)


# Assign a label to a patch v
data_loading_module.py 文件源码 项目:road-segmentation 作者: paramoecium 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def extract_labels(filename_base, num_images, num_of_transformations=6, patch_size=const.IMG_PATCH_SIZE,
                   patch_stride=const.IMG_PATCH_STRIDE):
    """Extract the labels into a 1-hot matrix [image index, label index]."""
    gt_imgs = []
    for i in range(1, num_images+1):
        imageid = "satImage_%.3d" % i
        image_filename = filename_base + imageid + ".png"
        if os.path.isfile(image_filename):
            print('Loading ' + image_filename)
            img = mpimg.imread(image_filename)
            gt_imgs.append(img)
        else:
            print('File ' + image_filename + ' does not exist')

    num_images = len(gt_imgs)
    print('Extracting patches...')
    gt_patches = [pem.label_img_crop(gt_imgs[i], patch_size, patch_stride, num_of_transformations)
                  for i in range(num_images)]
    data = np.asarray([gt_patches[i][j] for i in range(len(gt_patches)) for j in range(len(gt_patches[i]))])
    labels = np.asarray([value_to_class(np.mean(data[i])) for i in range(len(data))])
    print(str(len(data)) + ' label patches extracted.')

    # Convert to dense 1-hot representation.
    return labels.astype(np.float32)
data_loading_module.py 文件源码 项目:road-segmentation 作者: paramoecium 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def extract_label_images(filename_base, num_images, patch_size=const.IMG_PATCH_SIZE,
                         patch_stride=const.IMG_PATCH_STRIDE, img_base_name="satImage_%.3d"):
    """Extract labels from ground truth as label images."""
    gt_imgs = []
    for i in range(1, num_images+1):
        imageid = img_base_name % i
        image_filename = filename_base + imageid + ".png"
        if os.path.isfile(image_filename):
            print('Loading ' + image_filename)
            img = mpimg.imread(image_filename)
            gt_imgs.append(img)
        else:
            print('File ' + image_filename + ' does not exist')

    num_images = len(gt_imgs)
    print('Extracting patches...')
    gt_patches = [pixel_to_patch_labels(gt_imgs[i], patch_size, patch_stride) for i in range(num_images)]

    return gt_patches
evaluate.py 文件源码 项目:monodepth360 作者: srijanparmeshwar 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def filter_bad_images():
    index = 0
    gt_index = arguments.gt_start
    predicted_index = arguments.predicted_start
    indices = []
    filter_path = search(predicted_index)

    filter_filename = os.path.join(arguments.gt_path, "filter_close.txt")
    if os.path.exists(filter_filename):
        with open(filter_filename, "r") as filter_file:
            filter_close_indices = [int(line.strip()) for line in filter_file.readlines()]
    else:
        filter_close_indices = []

    for image_index in range(arguments.samples):
        rgb = mpimg.imread(os.path.join(filter_path, arguments.filter_format.format(predicted_index)))
        if np.median(rgb) > 5 and gt_index not in filter_close_indices:
            indices.append((index, gt_index, predicted_index))
            index += 1

        gt_index += 1
        predicted_index += 1

    return indices
reader.py 文件源码 项目:monodepth360 作者: srijanparmeshwar 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def read_file(filename, shape = None):
    if filename.lower().endswith(".exr"):
        depth_map = read_depth(filename)
        return depth_map, depth_map < 1000.0

    elif filename.lower().endswith(".png"):
        depth_map = mpimg.imread(filename)

        if shape is not None:
            ih, iw = depth_map.shape
            h, w = shape

            if ih > 1024:
                depth_map = depth_map[::2, ::2]

            depth_map = zoom(depth_map, [float(h) / float(ih), w / float(iw)], order = 1)

        mask = depth_map < 0.99
        depth_map = depth_map * 65536 / 1000
        return depth_map, mask

    elif filename.lower().endswith(".npy"):
        return np.load(filename), None
brain_tumor_segmentation_models.py 文件源码 项目:nn-segmentation-for-lar 作者: cvdlab 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def predict_image(self, test_img):
        """
        predicts classes of input image
        :param test_img: filepath to image to predict on
        :return: segmented result
        """
        # imgs = io.imread(test_img).astype('float').reshape(5, 216, 160)
        imgs = mpimg.imread(test_img).astype('float')
        imgs = rgb2gray(imgs).reshape(5, 216, 160)

        plist = []

        # create patches_to_predict from an entire slice
        for img in imgs[:-1]:
            if np.max(img) != 0:
                img /= np.max(img)
            p = extract_patches_2d(img, (33, 33))
            plist.append(p)
        patches_to_predict = np.array(
            zip(np.array(plist[0]), np.array(plist[1]), np.array(plist[2]), np.array(plist[3])))

        # predict classes of each pixel based on model
        full_pred = self.model.predict_classes(patches_to_predict)
        fp1 = full_pred.reshape(184, 128)
        return fp1
android_rec.py 文件源码 项目:Handwriting-Recognition 作者: samkit-jain 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def ret_val():
    if os.path.isfile('./classifier_full.pickle'):
        f = open('classifier_full.pickle', 'rb')
        clf = pickle.load(f)

    digit_loc = get_image_src2()

    digit_image = mpimg.imread(digit_loc)

    gray_digit = np.dot(digit_image[...,:3], [0.299, 0.587, 0.114])
    digit_display = gray_digit

    gray_digit = gray_digit.flatten()

    for i in range(len(gray_digit)):
        gray_digit[i] = 1.0 - gray_digit[i]
        gray_digit[i] = round(gray_digit[i], 8)

    return str(int(clf.predict([gray_digit])[0]))
cluster.py 文件源码 项目:big-data 作者: michaelgbw 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def recolor_image(input_file, k=5):

    img = mpimg.imread(path_to_png_file)
    pixels = [pixel for row in img for pixel in row]
    clusterer = KMeans(k)
    clusterer.train(pixels) # this might take a while    

    def recolor(pixel):
        cluster = clusterer.classify(pixel) # index of the closest cluster
        return clusterer.means[cluster]     # mean of the closest cluster

    new_img = [[recolor(pixel) for pixel in row]
               for row in img]

    plt.imshow(new_img)
    plt.axis('off')
    plt.show()

#
# hierarchical clustering
#
project3.py 文件源码 项目:Self-Driving-Car-ND-Predict-Steering-Angle-with-CV 作者: sjamthe 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def fetch_image(i=0):

    #reading in an image from test
    images = ['test_images/solidWhiteCurve.jpg',
     'test_images/solidWhiteRight.jpg',
     'test_images/solidYellowCurve.jpg',
     'test_images/solidYellowCurve2.jpg',
     'test_images/solidYellowLeft.jpg',
     'test_images/whiteCarLaneSwitch.jpg',
      'test_images/challenge/test-14.jpg']
    if(i > 6):
        i = 6
    if(i<0):
        i=0
    image = mpimg.imread(images[i])

    return image


# In[120]:
test-classifier.py 文件源码 项目:simple-recognition 作者: peixebabel 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def testClassifier():
    clf = pickle.load(open("classifier.p", "rb"))
    classes = numpy.loadtxt(dataset_root + 'classes.txt', dtype=str)
    classes = column(classes, 0)

    image_files = sorted(listdir(
        join(project_root, test_images_dir)))
    for image in image_files:
        features = extractFeatures(
            str(abspath(join(project_root, test_images_dir, image))))
        prediction = clf.predict(features)
        img = mpimg.imread(
            str(abspath(join(project_root, test_images_dir, image))))
        fig = plt.figure()
        fig.suptitle(classes[int(prediction[0])],
                     fontsize=14, fontweight='bold')
        plt.imshow(img)
image_helpers.py 文件源码 项目:RoadSegmentation 作者: njroussel 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def read_3channel_images(image_filename, num_images, file_regex):
    images = []

    for i in range(1, num_images + 1):
        imageid = file_regex % i
        filename = image_filename + imageid + ".png"

        if os.path.isfile(filename):
            print('Loading ' + filename)
            img = mpimg.imread(filename)
            tmp = np.array(img)
            if len(tmp.shape) == 3:
                img = img[:, :, :3]

            images.append(img)
        else:
            print('File ' + filename + ' does not exist')

    return np.array(images)
visualize.py 文件源码 项目:chainer-visualization 作者: hvy 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def tile_ims(filename, directory):

    """Load all images in the given directory and tile them into one."""

    ims = [mpimg.imread(os.path.join(directory, f)) for f in sorted(os.listdir(directory))]
    ims = np.array(ims)
    ims = ims.transpose((0, 3, 1, 2))  # (n, h, w, c) -> (n, c, h ,w)
    save_ims(filename, ims)
MyRGBImage_class.py 文件源码 项目:DenoiseAverage 作者: Pella86 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def read_from_file(self, filepathname, normalize = True):
        # import image from file
        # todo warnings about file existing
        img = mpimg.imread(filepathname)
        img = MyRGBImg(img)


        if img.data.shape[2] == 4:
            colors = []
            for i in range(3):
                channel = img.get_channel(i)
                colors.append(channel)

            # initializate the image
            myimage = MyRGBImg(data = np.zeros((img.data.shape[0],
                                                img.data.shape[1],
                                                3)))
            for i in range(3):
                channel = colors[i]
                channel.data = np.transpose(channel.data)
                myimage.set_channel(channel, i)
            self.data = myimage.data
        else:
            self.data = img.data

        if normalize:
            self.limit(1)
MyImage_class.py 文件源码 项目:DenoiseAverage 作者: Pella86 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def read_from_file(self, filepathname):
        ''' import image from file using the mpimg utility of matplotlib'''
        # todo warnings about file existing ?
        self.data = mpimg.imread(filepathname)
watermark.py 文件源码 项目:plotnine 作者: has2k1 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def draw(self, figure):
        """
        Draw watermark

        Parameters
        ----------
        figure : Matplotlib.figure.Figure
            Matplolib figure on which to draw
        """
        X = mimage.imread(self.filename)
        figure.figimage(X, **self.kwargs)
car_notcar.py 文件源码 项目:SelfDrivingCar 作者: aguijarro 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def data_look(car_list, notcar_list):
    data_dict = {}
    # Define a key in data_dict "n_cars" and store the number of car images
    data_dict["n_cars"] = len(car_list)
    # Define a key "n_notcars" and store the number of notcar images
    data_dict["n_notcars"] = len(notcar_list)
    # Read in a test image, either car or notcar
    test_img = mpimg.imread(car_list[0])
    # Define a key "image_shape" and store the test image shape 3-tuple
    data_dict["image_shape"] = test_img.shape
    # Define a key "data_type" and store the data type of the test image.
    data_dict["data_type"] = test_img.dtype
    # Return data_dict
    return data_dict


问题


面经


文章

微信
公众号

扫码关注公众号