python类GridSpec()的实例源码

autoencoder.py 文件源码 项目:Adversarial_Autoencoder 作者: Naresh1318 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def generate_image_grid(sess, op):
    """
    Generates a grid of images by passing a set of numbers to the decoder and getting its output.
    :param sess: Tensorflow Session required to get the decoder output
    :param op: Operation that needs to be called inorder to get the decoder output
    :return: None, displays a matplotlib window with all the merged images.
    """
    x_points = np.arange(0, 1, 1.5).astype(np.float32)
    y_points = np.arange(0, 1, 1.5).astype(np.float32)

    nx, ny = len(x_points), len(y_points)
    plt.subplot()
    gs = gridspec.GridSpec(nx, ny, hspace=0.05, wspace=0.05)

    for i, g in enumerate(gs):
        z = np.concatenate(([x_points[int(i / ny)]], [y_points[int(i % nx)]]))
        z = np.reshape(z, (1, 2))
        x = sess.run(op, feed_dict={decoder_input: z})
        ax = plt.subplot(g)
        img = np.array(x.tolist()).reshape(28, 28)
        ax.imshow(img, cmap='gray')
        ax.set_xticks([])
        ax.set_yticks([])
        ax.set_aspect('auto')
    plt.show()
adversarial_autoencoder.py 文件源码 项目:Adversarial_Autoencoder 作者: Naresh1318 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def generate_image_grid(sess, op):
    """
    Generates a grid of images by passing a set of numbers to the decoder and getting its output.
    :param sess: Tensorflow Session required to get the decoder output
    :param op: Operation that needs to be called inorder to get the decoder output
    :return: None, displays a matplotlib window with all the merged images.
    """
    x_points = np.arange(-10, 10, 1.5).astype(np.float32)
    y_points = np.arange(-10, 10, 1.5).astype(np.float32)

    nx, ny = len(x_points), len(y_points)
    plt.subplot()
    gs = gridspec.GridSpec(nx, ny, hspace=0.05, wspace=0.05)

    for i, g in enumerate(gs):
        z = np.concatenate(([x_points[int(i / ny)]], [y_points[int(i % nx)]]))
        z = np.reshape(z, (1, 2))
        x = sess.run(op, feed_dict={decoder_input: z})
        ax = plt.subplot(g)
        img = np.array(x.tolist()).reshape(28, 28)
        ax.imshow(img, cmap='gray')
        ax.set_xticks([])
        ax.set_yticks([])
        ax.set_aspect('auto')
    plt.show()
plot.py 文件源码 项目:bmlingam 作者: taku-y 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plot_gendata():
    """Plot artificial data with n_confounders=[0, 1, 6, 12].

    This program is used to check artificial data. 
    """
    n_samples = 200
    rng = np.random.RandomState(0)
    plt.figure(figsize=(10, 10))
    gs = gridspec.GridSpec(2, 2)

    # ---- Loop over the number of confonders ----
    for i, n_confounders in enumerate([0, 1, 6, 12]):
        # ---- Generate samples ----
        xs = gendata_latents(n_confounders, n_samples, rng)

        # ---- Plot samples ----
        ax = plt.subplot(gs[i])
        ax.scatter(xs[:, 0], xs[:, 1])
        ax.set_xlim(-10, 10)
        ax.set_ylim(-10, 10)
        ax.set_title('n_confounders=%d' % n_confounders)

    return
test_pretrained_model.py 文件源码 项目:hco-experiments 作者: zooniverse 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plot_pred_vs_image(img,preds_df,out_name):
    # function to plot predictions vs image
    f, axarr = plt.subplots(2, 1)
    plt.suptitle("ResNet50- PreTrained on ImageNet")
    axarr[0].imshow(img)
    sns.set_style("whitegrid")
    pl = sns.barplot(data = preds_df, x='Score', y='Species')
    axarr[1] = sns.barplot(data = preds_df, x='Score', y='Species',)
    axarr[0].autoscale(enable=False)
    axarr[0].get_xaxis().set_ticks([])
    axarr[0].get_yaxis().set_ticks([])
    axarr[1].autoscale(enable=False)
    gs = gridspec.GridSpec(2,1, width_ratios=[1],height_ratios=[1,0.1])
    plt.tight_layout()
    plt.savefig(out_name + '.png')


#########################
# Models
#########################

# load model
bot.py 文件源码 项目:icinco-code 作者: jacobnzw 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def bot_demo():
    steps = 100
    mc_simulations = 1
    ssm = BearingsOnlyTracking(dt=0.1)
    x, z = ssm.simulate(steps, mc_sims=mc_simulations)
    # plt.plot(x[0, ...], color='b', alpha=0.15, label='state trajectory')
    # plt.plot(z[0, ...], color='k', alpha=0.25, ls='None', marker='.', label='measurements')
    plt.figure()
    g = gridspec.GridSpec(4, 1)
    plt.subplot(g[:2, 0])
    for i in range(mc_simulations):
        plt.plot(x[0, :, i], x[2, :, i], alpha=0.85, color='b')
    plt.subplot(g[2, 0])
    plt.plot(x[0, :, 0])
    plt.subplot(g[3, 0])
    plt.plot(x[2, :, 0])
    plt.show()
models.py 文件源码 项目:siHMM 作者: Ardavans 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _get_axes(self,fig):
        # TODO is attaching these to the figure a good idea? why not save them
        # here and reuse them if we recognize the figure being passed in
        sz = self._fig_sz

        if hasattr(fig,'_feature_ax') and hasattr(fig,'_stateseq_axs'):
            return fig._feature_ax, fig._stateseq_axs
        else:
            if len(self.states_list) <= 2:
                gs = GridSpec(sz+len(self.states_list),1)

                feature_ax = plt.subplot(gs[:sz,:])
                stateseq_axs = [plt.subplot(gs[sz+idx]) for idx in range(len(self.states_list))]
            else:
                gs = GridSpec(1,2)
                sgs = GridSpecFromSubplotSpec(len(self.states_list),1,subplot_spec=gs[1])

                feature_ax = plt.subplot(gs[0])
                stateseq_axs = [plt.subplot(sgs[idx]) for idx in range(len(self.states_list))]

            for ax in stateseq_axs:
                ax.grid('off')

            fig._feature_ax, fig._stateseq_axs = feature_ax, stateseq_axs
            return feature_ax, stateseq_axs
plot_orf_density.py 文件源码 项目:RiboCode 作者: xzt41 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plot_main(cds_start,cds_end,psites_array,orf_tstart,orf_tstop,outname):
    """
    the main plot function
    """
    plt.figure(figsize=(8,4))
    if cds_start is not None:
        gs = gridspec.GridSpec(3,1,height_ratios=[10,1,1],hspace=0.6,left=0.2,right=0.95)
    else:
        gs = gridspec.GridSpec(2,1,height_ratios=[11,1],hspace=0.6,left=0.2,right=0.95)

    ax1 = plt.subplot(gs[0])
    ax2 = plt.subplot(gs[1])
    plot_ORF(ax1,psites_array,orf_tstart)
    plot_annotation(ax2,psites_array.size,orf_tstart,orf_tstop,"Predicted","#3994FF")

    if cds_start is not None:
        ax3 = plt.subplot(gs[2])
        plot_annotation(ax3,psites_array.size,cds_start,cds_end,"Annotated","#006DD5")
    # plt.tight_layout()
    plt.savefig(outname + ".pdf")
test.py 文件源码 项目:attention_ocr 作者: lightcaster 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def plot_alpha(alpha, x, y):

    f, (a0, a1) = plt.subplots(2)
    gs = grd.GridSpec(2,1, wspace=0.01) #, height_ratios=[1, 4])
    a0 = plt.subplot(gs[0])

    a0.matshow(x.T, cmap=plt.cm.Greys_r) #, aspect='auto')

    probs = np.zeros_like(alpha)
    for i in range(len(alpha)):
        probs[i] = np.convolve(
            alpha[i], np.ones((2,))/2., mode='same')

    a1.matshow(alpha, interpolation='none', aspect='auto')
    xticks = np.argmax(probs, axis=1)

    a1.set_xticks(xticks)
    a1.set_xticklabels(y, fontsize=16)
    a1.grid(which='both') 
    plt.subplots_adjust(top=None, bottom=None, wspace=0.05, hspace=0.05)

    plt.show()
test.py 文件源码 项目:polo 作者: adrianveres 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def make_figure():
    gs = gridspec.GridSpec(5, 1,
                       height_ratios=[3, 1, 2, 3, 1],
                       hspace=0)

    data, Z, D = get_random_data(100, 0)
    order = leaves_list(Z)


    runtime, opt_Z = run_polo(Z, D)
    opt_order = leaves_list(opt_Z)

    fig = plt.figure(figsize=(5,5))
    axd1 = fig.add_subplot(gs[0,0])
    axd1.set_title("Random numbers, clustered using Ward's criterion, default linear ordering.", fontsize=9)
    dendrogram(Z, ax=axd1, link_color_func=lambda k: 'k')
    axd1.set_xticklabels(data[order].reshape(-1))
    axd1.set_xticks([])
    axd1.set_yticks([])

    axh1 = fig.add_subplot(gs[1,0])
    axh1.matshow(data[order].reshape((1,-1)), aspect='auto', cmap='RdBu', vmin=0, vmax=10000)
    axh1.set_xticks([])
    axh1.set_yticks([])

    axd2 = fig.add_subplot(gs[3,0])
    axd2.set_title("The same hierarchical clustering, arranged for optimal linear ordering.", fontsize=9)
    dendrogram(opt_Z, ax=axd2, link_color_func=lambda k: 'k')
    axd2.set_xticklabels(data[opt_order].reshape(-1))
    axd2.set_xticks([])
    axd2.set_yticks([])

    axh2 = fig.add_subplot(gs[4,0])
    axh2.matshow(data[opt_order].reshape((1,-1)), aspect='auto', cmap='RdBu', vmin=0, vmax=10000)
    axh2.set_xticks([])
    axh2.set_yticks([])

    fig.savefig('data/demo.png', dpi=130)
gmvae.py 文件源码 项目:vi_vae_gmm 作者: wangg12 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def plot_images_and_clusters(images, clusters, epoch, save_path, ncol=10):
    '''use multiple images'''
    fig = plt.figure()#facecolor='black')
    images = np.squeeze(images, -1)

    nrow = int(np.ceil(images.shape[0] / float(ncol)))
    gs = gridspec.GridSpec(nrow, ncol,
                        width_ratios=[1]*ncol, height_ratios=[1]*nrow,
        #                         wspace=0.01, hspace=0.001,
        #                         top=0.95, bottom=0.05,
        #                         left=0.05, right=0.95
                        )
    gs.update(wspace=0, hspace=0)
    n = 0
    for i in range(10):
        images_i = images[clusters==i, :, :]
        if images_i.shape[0] == 0:
            continue

        for j in range(images_i.shape[0]):
            ax = plt.subplot(gs[n])
            n += 1
            plt.imshow(images_i[j,:], cmap='gray')
            plt.axis('off')
            ax.set_aspect('auto')
    plt.savefig(os.path.join(save_path, 'plot_gmvae_epoch_{}.png'.format(epoch)), dpi=fig.dpi)
plot.py 文件源码 项目:POT 作者: rflamary 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plot1D_mat(a, b, M, title=''):
    """ Plot matrix M  with the source and target 1D distribution

    Creates a subplot with the source distribution a on the left and
    target distribution b on the tot. The matrix M is shown in between.


    Parameters
    ----------
    a : np.array, shape (na,)
        Source distribution
    b : np.array, shape (nb,)
        Target distribution
    M : np.array, shape (na,nb)
        Matrix to plot
    """
    na, nb = M.shape

    gs = gridspec.GridSpec(3, 3)

    xa = np.arange(na)
    xb = np.arange(nb)

    ax1 = pl.subplot(gs[0, 1:])
    pl.plot(xb, b, 'r', label='Target distribution')
    pl.yticks(())
    pl.title(title)

    ax2 = pl.subplot(gs[1:, 0])
    pl.plot(a, xa, 'b', label='Source distribution')
    pl.gca().invert_xaxis()
    pl.gca().invert_yaxis()
    pl.xticks(())

    pl.subplot(gs[1:, 1:], sharex=ax1, sharey=ax2)
    pl.imshow(M, interpolation='nearest')
    pl.axis('off')

    pl.xlim((0, nb))
    pl.tight_layout()
    pl.subplots_adjust(wspace=0., hspace=0.2)
phiplot.py 文件源码 项目:phiplot 作者: grahamfindlay 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def plot_concept_list(constellation, fig=None, **kwargs):
    """Vertically stack a constellation's concept plots (uses `plot_concept`).

    Examples:
        >>> big_mip = pyphi.compute.big_mip(sub)
        >>> plot_concept_list(big_mip.unpartitioned_constellation,
                             title_fmt='MP', state_fmt='1')
        >>> matplotlib.pyplot.show()

    Args:
        constellation (list(pyphi.models.Concept)): A list of concepts to plot.

    Keyword args:
        fig (matplotlib.Figure): A figure on which to plot. If *None*, a new
            figure is created and used. Default *None*.
        Any unmatched kwargs are passed to `plot_concept`.
    """
    DEFAULT_WIDTH = 8 # in inches
    DEFAULT_CONCEPT_HEIGHT = 1.75 # in inches
    n_concepts = len(constellation)
    if fig is None:
        fig = plt.figure(1, (DEFAULT_WIDTH, DEFAULT_CONCEPT_HEIGHT * n_concepts))


    gs = gridspec.GridSpec(n_concepts, 1)

    for concept_idx in range(n_concepts):
        plot_concept(constellation[concept_idx],
                     fig=fig,
                     subplot_spec=gs[concept_idx, 0],
                     **kwargs)

    fig.tight_layout()
train.py 文件源码 项目:CGAN 作者: theflashsean1 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _plot(samples):
    fig = plt.figure(figsize=(10, 10))
    gs = gridspec.GridSpec(10, 10)
    gs.update(wspace=0.05, hspace=0.05)

    for i, sample in enumerate(samples):
        ax = plt.subplot(gs[i])
        plt.axis('off')
        ax.set_xticklabels([])
        ax.set_yticklabels([])
        ax.set_aspect('equal')
        plt.imshow(sample.reshape(28, 28), cmap='Greys_r')
    return fig
utils.py 文件源码 项目:nelpy 作者: nelpy 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __enter__(self):
        if not self.skip:
            self.fig = plt.figure(figsize=self.figsize,
                                  dpi=self.dpi,
                                  **self.kwargs)
            self.fig.npl_gs = gridspec.GridSpec(nrows=self.nrows,
                                                ncols=self.ncols)

            self.ax = np.array([self.fig.add_subplot(ss) for ss in self.fig.npl_gs])
            # self.fig, self.ax = plt.subplots(nrows=self.nrows,
            #                                  ncols=self.ncols,
            #                                  figsize=self.figsize,
            #                                  tight_layout=self.tight_layout,
            #                                  dpi=self.dpi,
            #                                  **self.kwargs)
            if len(self.ax) == 1:
                self.ax = self.ax[0]

            if self.tight_layout:
                self.fig.npl_gs.tight_layout(self.fig)

            # gs1.tight_layout(fig, rect=[0, 0.03, 1, 0.95])
            if self.fig != plt.gcf():
                self.clear()
                raise RuntimeError('Figure does not match active mpl figure')
            return self.fig, self.ax
        return -1, -1
core.py 文件源码 项目:nelpy 作者: nelpy 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def rastercountplot(spiketrain, nbins=50, **kwargs):
    fig = plt.figure(figsize=(14, 6))
    gs = gridspec.GridSpec(2, 1, hspace=0.01, height_ratios=[0.2,0.8])
    ax1 = plt.subplot(gs[0])
    ax2 = plt.subplot(gs[1])

    color = kwargs.get('color', None)
    if color is None:
        color = '0.4'

    ds = (spiketrain.support.stop - spiketrain.support.start)/nbins
    flattened = spiketrain.bin(ds=ds).flatten()
    steps = np.squeeze(flattened.data)
    stepsx = np.linspace(spiketrain.support.start, spiketrain.support.stop, num=flattened.n_bins)

#     ax1.plot(stepsx, steps, drawstyle='steps-mid', color='none');
    ax1.set_ylim([-0.5, np.max(steps)+1])
    rasterplot(spiketrain, ax=ax2, **kwargs)

    utils.clear_left_right(ax1)
    utils.clear_top_bottom(ax1)
    utils.clear_top(ax2)

    ax1.fill_between(stepsx, steps, step='mid', color=color)

    utils.sync_xlims(ax1, ax2)

    return ax1, ax2
plot_propagation.py 文件源码 项目:geepee 作者: thangbui 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def newfig(width):
    plt.clf()
    fig = plt.figure(figsize=figsize(width))

    gs = gridspec.GridSpec(2, 2,
                       width_ratios=[1,4],
                       height_ratios=[4,1]
                       )

    ax1 = plt.subplot(gs[0])
    ax2 = plt.subplot(gs[1])
    ax3 = plt.subplot(gs[3])

    return fig, (ax1, ax2, ax3)
layouts.py 文件源码 项目:MDT 作者: cbclab 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, gridspec, figure, positions=None):
        """Create a grid layout specifier using the given gridspec and the given figure.

        Args:
            gridspec (GridSpec): the gridspec to use
            figure (Figure): the figure to generate subplots for
            positions (:class:`list`): if given, a list with grid spec indices for every requested axis
                can be logical indices or (x, y) coordinate indices (choose one and stick with it).
        """
        self.gridspec = gridspec
        self.figure = figure
        self.positions = positions
layouts.py 文件源码 项目:MDT 作者: cbclab 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def get_gridspec(self, figure, nmr_plots):
        rows, cols = self._get_square_size(nmr_plots)
        return GridLayoutSpecifier(GridSpec(rows, cols, **self.spacings), figure)
layouts.py 文件源码 项目:MDT 作者: cbclab 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get_gridspec(self, figure, nmr_plots):
        rows, columns, positions = self._get_size_and_position(nmr_plots)
        return GridLayoutSpecifier(GridSpec(rows, columns, **self.spacings), figure, positions=positions)
layouts.py 文件源码 项目:MDT 作者: cbclab 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def get_gridspec(self, figure, nmr_plots):
        return GridLayoutSpecifier(GridSpec(nmr_plots, 1, **self.spacings), figure)


问题


面经


文章

微信
公众号

扫码关注公众号