python类abs()的实例源码

test_torch.py 文件源码 项目:pytorch 作者: pytorch 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def test_acos(self):
        self._testMath(torch.acos, lambda x: math.acos(x) if abs(x) <= 1 else float('nan'))
test_torch.py 文件源码 项目:pytorch 作者: pytorch 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _test_btrifact(self, cast):
        a = torch.FloatTensor((((1.3722, -0.9020),
                                (1.8849, 1.9169)),
                               ((0.7187, -1.1695),
                                (-0.0139, 1.3572)),
                               ((-1.6181, 0.7148),
                                (1.3728, 0.1319))))
        a = cast(a)
        info = cast(torch.IntTensor())
        a_LU = a.btrifact(info=info)
        self.assertEqual(info.abs().sum(), 0)
        P, a_L, a_U = torch.btriunpack(*a_LU)
        a_ = torch.bmm(P, torch.bmm(a_L, a_U))
        self.assertEqual(a_, a)
test_torch.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def _testSelection(self, torchfn, mathfn):
        # contiguous
        m1 = torch.randn(100,100)
        res1 = torchfn(m1)
        res2 = m1[0,0]
        for i, j in iter_indices(m1):
            res2 = mathfn(res2, m1[i,j])
        self.assertEqual(res1, res2)

        # non-contiguous
        m1 = torch.randn(10,10,10)
        m2 = m1[:,4]
        res1 = torchfn(m2)
        res2 = m2[0,0]
        for i, j in iter_indices(m2):
            res2 = mathfn(res2, m2[i][j])
        self.assertEqual(res1, res2)

        # with indices
        m1 = torch.randn(100,100)
        res1val, res1ind = torchfn(m1, 1)
        res2val = m1[:,0:1].clone()
        res2ind = res1ind.clone().fill_(0)
        for i, j in iter_indices(m1):
            if mathfn(res2val[i,0], m1[i,j]) != res2val[i,0]:
                res2val[i,0] = m1[i,j]
                res2ind[i,0] = j

        maxerr = 0
        for i in range(res1val.size(0)):
            maxerr = max(maxerr, abs(res1val[i][0] - res2val[i][0]))
            self.assertEqual(res1ind[i][0], res2ind[i][0])
        self.assertLessEqual(abs(maxerr), 1e-5)

        # NaNs
        for index in (0, 4, 99):
            m1 = torch.randn(100)
            m1[index] = float('nan')
            res1val, res1ind = torch.max(m1, 0)
            self.assertNotEqual(res1val[0], res1val[0])
            self.assertEqual(res1ind[0], index)
            res1val = torchfn(m1)
            self.assertNotEqual(res1val, res1val)
test_torch.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def test_conv3(self):
        x = torch.rand(math.floor(torch.uniform(20, 40)),
                math.floor(torch.uniform(20, 40)),
                math.floor(torch.uniform(20, 40)))
        k = torch.rand(math.floor(torch.uniform(5, 10)),
                math.floor(torch.uniform(5, 10)),
                math.floor(torch.uniform(5, 10)))
        imvc = torch.conv3(x, k)
        imvc2 = torch.conv3(x, k, 'V')
        imfc = torch.conv3(x, k, 'F')

        ki = k.clone();
        ks = k.storage()
        kis = ki.storage()
        for i in range(ks.size()-1, 0, -1):
            kis[ks.size()-i+1] = ks[i]
        imvx = torch.xcorr3(x, ki)
        imvx2 = torch.xcorr3(x, ki, 'V')
        imfx = torch.xcorr3(x, ki, 'F')

        self.assertEqual(imvc, imvc2, 0, 'torch.conv3')
        self.assertEqual(imvc, imvx, 0, 'torch.conv3')
        self.assertEqual(imvc, imvx2, 0, 'torch.conv3')
        self.assertEqual(imfc, imfx, 0, 'torch.conv3')
        self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr3(x, x)[0][0][0]), 4e-10, 'torch.conv3')

        xx = torch.Tensor(2, x.size(1), x.size(2), x.size(3))
        xx[1].copy_(x)
        xx[2].copy_(x)
        kk = torch.Tensor(2, k.size(1), k.size(2), k.size(3))
        kk[1].copy_(k)
        kk[2].copy_(k)

        immvc = torch.conv3(xx, kk)
        immvc2 = torch.conv3(xx, kk, 'V')
        immfc = torch.conv3(xx, kk, 'F')

        self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv3')
        self.assertEqual(immvc[0], imvc, 0, 'torch.conv3')
        self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv3')
        self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv3')
        self.assertEqual(immfc[0], imfc, 0, 'torch.conv3')
test_torch.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _testSelection(self, torchfn, mathfn):
        # contiguous
        m1 = torch.randn(100, 100)
        res1 = torchfn(m1)
        res2 = m1[0, 0]
        for i, j in iter_indices(m1):
            res2 = mathfn(res2, m1[i, j])
        self.assertEqual(res1, res2)

        # non-contiguous
        m1 = torch.randn(10, 10, 10)
        m2 = m1[:, 4]
        res1 = torchfn(m2)
        res2 = m2[0, 0]
        for i, j in iter_indices(m2):
            res2 = mathfn(res2, m2[i][j])
        self.assertEqual(res1, res2)

        # with indices
        m1 = torch.randn(100, 100)
        res1val, res1ind = torchfn(m1, 1)
        res2val = m1[:, 0:1].clone()
        res2ind = res1ind.clone().fill_(0)
        for i, j in iter_indices(m1):
            if mathfn(res2val[i, 0], m1[i, j]) != res2val[i, 0]:
                res2val[i, 0] = m1[i, j]
                res2ind[i, 0] = j

        maxerr = 0
        for i in range(res1val.size(0)):
            maxerr = max(maxerr, abs(res1val[i][0] - res2val[i][0]))
            self.assertEqual(res1ind[i][0], res2ind[i][0])
        self.assertLessEqual(abs(maxerr), 1e-5)

        # NaNs
        for index in (0, 4, 99):
            m1 = torch.randn(100)
            m1[index] = float('nan')
            res1val, res1ind = torch.max(m1, 0)
            self.assertNotEqual(res1val[0], res1val[0])
            self.assertEqual(res1ind[0], index)
            res1val = torchfn(m1)
            self.assertNotEqual(res1val, res1val)
test_torch.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_conv3(self):
        x = torch.rand(math.floor(torch.uniform(20, 40)),
                       math.floor(torch.uniform(20, 40)),
                       math.floor(torch.uniform(20, 40)))
        k = torch.rand(math.floor(torch.uniform(5, 10)),
                       math.floor(torch.uniform(5, 10)),
                       math.floor(torch.uniform(5, 10)))
        imvc = torch.conv3(x, k)
        imvc2 = torch.conv3(x, k, 'V')
        imfc = torch.conv3(x, k, 'F')

        ki = k.clone()
        ks = k.storage()
        kis = ki.storage()
        for i in range(ks.size() - 1, 0, -1):
            kis[ks.size() - i + 1] = ks[i]
        imvx = torch.xcorr3(x, ki)
        imvx2 = torch.xcorr3(x, ki, 'V')
        imfx = torch.xcorr3(x, ki, 'F')

        self.assertEqual(imvc, imvc2, 0, 'torch.conv3')
        self.assertEqual(imvc, imvx, 0, 'torch.conv3')
        self.assertEqual(imvc, imvx2, 0, 'torch.conv3')
        self.assertEqual(imfc, imfx, 0, 'torch.conv3')
        self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr3(x, x)[0][0][0]), 4e-10, 'torch.conv3')

        xx = torch.Tensor(2, x.size(1), x.size(2), x.size(3))
        xx[1].copy_(x)
        xx[2].copy_(x)
        kk = torch.Tensor(2, k.size(1), k.size(2), k.size(3))
        kk[1].copy_(k)
        kk[2].copy_(k)

        immvc = torch.conv3(xx, kk)
        immvc2 = torch.conv3(xx, kk, 'V')
        immfc = torch.conv3(xx, kk, 'F')

        self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv3')
        self.assertEqual(immvc[0], imvc, 0, 'torch.conv3')
        self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv3')
        self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv3')
        self.assertEqual(immfc[0], imfc, 0, 'torch.conv3')
test_torch.py 文件源码 项目:pytorch-coriander 作者: hughperkins 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def _testSelection(self, torchfn, mathfn):
        # contiguous
        m1 = torch.randn(100, 100)
        res1 = torchfn(m1)
        res2 = m1[0, 0]
        for i, j in iter_indices(m1):
            res2 = mathfn(res2, m1[i, j])
        self.assertEqual(res1, res2)

        # non-contiguous
        m1 = torch.randn(10, 10, 10)
        m2 = m1[:, 4]
        res1 = torchfn(m2)
        res2 = m2[0, 0]
        for i, j in iter_indices(m2):
            res2 = mathfn(res2, m2[i][j])
        self.assertEqual(res1, res2)

        # with indices
        m1 = torch.randn(100, 100)
        res1val, res1ind = torchfn(m1, 1, False)
        res2val = m1[:, 0:1].clone().squeeze()
        res2ind = res1ind.clone().fill_(0)
        for i, j in iter_indices(m1):
            if mathfn(res2val[i], m1[i, j]) != res2val[i]:
                res2val[i] = m1[i, j]
                res2ind[i] = j

        maxerr = 0
        for i in range(res1val.size(0)):
            maxerr = max(maxerr, abs(res1val[i] - res2val[i]))
            self.assertEqual(res1ind[i], res2ind[i])
        self.assertLessEqual(abs(maxerr), 1e-5)

        # NaNs
        for index in (0, 4, 99):
            m1 = torch.randn(100)
            m1[index] = float('nan')
            res1val, res1ind = torch.max(m1, 0)
            self.assertNotEqual(res1val[0], res1val[0])
            self.assertEqual(res1ind[0], index)
            res1val = torchfn(m1)
            self.assertNotEqual(res1val, res1val)
test_torch.py 文件源码 项目:pytorch-coriander 作者: hughperkins 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_conv3(self):
        x = torch.rand(math.floor(torch.uniform(20, 40)),
                       math.floor(torch.uniform(20, 40)),
                       math.floor(torch.uniform(20, 40)))
        k = torch.rand(math.floor(torch.uniform(5, 10)),
                       math.floor(torch.uniform(5, 10)),
                       math.floor(torch.uniform(5, 10)))
        imvc = torch.conv3(x, k)
        imvc2 = torch.conv3(x, k, 'V')
        imfc = torch.conv3(x, k, 'F')

        ki = k.clone()
        ks = k.storage()
        kis = ki.storage()
        for i in range(ks.size() - 1, 0, -1):
            kis[ks.size() - i + 1] = ks[i]
        imvx = torch.xcorr3(x, ki)
        imvx2 = torch.xcorr3(x, ki, 'V')
        imfx = torch.xcorr3(x, ki, 'F')

        self.assertEqual(imvc, imvc2, 0, 'torch.conv3')
        self.assertEqual(imvc, imvx, 0, 'torch.conv3')
        self.assertEqual(imvc, imvx2, 0, 'torch.conv3')
        self.assertEqual(imfc, imfx, 0, 'torch.conv3')
        self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr3(x, x)[0][0][0]), 4e-10, 'torch.conv3')

        xx = torch.Tensor(2, x.size(1), x.size(2), x.size(3))
        xx[1].copy_(x)
        xx[2].copy_(x)
        kk = torch.Tensor(2, k.size(1), k.size(2), k.size(3))
        kk[1].copy_(k)
        kk[2].copy_(k)

        immvc = torch.conv3(xx, kk)
        immvc2 = torch.conv3(xx, kk, 'V')
        immfc = torch.conv3(xx, kk, 'F')

        self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv3')
        self.assertEqual(immvc[0], imvc, 0, 'torch.conv3')
        self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv3')
        self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv3')
        self.assertEqual(immfc[0], imfc, 0, 'torch.conv3')
test_torch.py 文件源码 项目:pytorch 作者: ezyang 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _testSelection(self, torchfn, mathfn):
        # contiguous
        m1 = torch.randn(100, 100)
        res1 = torchfn(m1)
        res2 = m1[0, 0]
        for i, j in iter_indices(m1):
            res2 = mathfn(res2, m1[i, j])
        self.assertEqual(res1, res2)

        # non-contiguous
        m1 = torch.randn(10, 10, 10)
        m2 = m1[:, 4]
        res1 = torchfn(m2)
        res2 = m2[0, 0]
        for i, j in iter_indices(m2):
            res2 = mathfn(res2, m2[i][j])
        self.assertEqual(res1, res2)

        # with indices
        m1 = torch.randn(100, 100)
        res1val, res1ind = torchfn(m1, 1, False)
        res2val = m1[:, 0:1].clone().squeeze()
        res2ind = res1ind.clone().fill_(0)
        for i, j in iter_indices(m1):
            if mathfn(res2val[i], m1[i, j]) != res2val[i]:
                res2val[i] = m1[i, j]
                res2ind[i] = j

        maxerr = 0
        for i in range(res1val.size(0)):
            maxerr = max(maxerr, abs(res1val[i] - res2val[i]))
            self.assertEqual(res1ind[i], res2ind[i])
        self.assertLessEqual(abs(maxerr), 1e-5)

        # NaNs
        for index in (0, 4, 99):
            m1 = torch.randn(100)
            m1[index] = float('nan')
            res1val, res1ind = torch.max(m1, 0)
            self.assertNotEqual(res1val[0], res1val[0])
            self.assertEqual(res1ind[0], index)
            res1val = torchfn(m1)
            self.assertNotEqual(res1val, res1val)
test_torch.py 文件源码 项目:pytorch 作者: ezyang 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def test_conv3(self):
        x = torch.rand(math.floor(torch.uniform(20, 40)),
                       math.floor(torch.uniform(20, 40)),
                       math.floor(torch.uniform(20, 40)))
        k = torch.rand(math.floor(torch.uniform(5, 10)),
                       math.floor(torch.uniform(5, 10)),
                       math.floor(torch.uniform(5, 10)))
        imvc = torch.conv3(x, k)
        imvc2 = torch.conv3(x, k, 'V')
        imfc = torch.conv3(x, k, 'F')

        ki = k.clone()
        ks = k.storage()
        kis = ki.storage()
        for i in range(ks.size() - 1, 0, -1):
            kis[ks.size() - i + 1] = ks[i]
        imvx = torch.xcorr3(x, ki)
        imvx2 = torch.xcorr3(x, ki, 'V')
        imfx = torch.xcorr3(x, ki, 'F')

        self.assertEqual(imvc, imvc2, 0, 'torch.conv3')
        self.assertEqual(imvc, imvx, 0, 'torch.conv3')
        self.assertEqual(imvc, imvx2, 0, 'torch.conv3')
        self.assertEqual(imfc, imfx, 0, 'torch.conv3')
        self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr3(x, x)[0][0][0]), 4e-10, 'torch.conv3')

        xx = torch.Tensor(2, x.size(1), x.size(2), x.size(3))
        xx[1].copy_(x)
        xx[2].copy_(x)
        kk = torch.Tensor(2, k.size(1), k.size(2), k.size(3))
        kk[1].copy_(k)
        kk[2].copy_(k)

        immvc = torch.conv3(xx, kk)
        immvc2 = torch.conv3(xx, kk, 'V')
        immfc = torch.conv3(xx, kk, 'F')

        self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv3')
        self.assertEqual(immvc[0], imvc, 0, 'torch.conv3')
        self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv3')
        self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv3')
        self.assertEqual(immfc[0], imfc, 0, 'torch.conv3')
test_torch.py 文件源码 项目:pytorch 作者: pytorch 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _testSelection(self, torchfn, mathfn):
        # contiguous
        m1 = torch.randn(100, 100)
        res1 = torchfn(m1)
        res2 = m1[0, 0]
        for i, j in iter_indices(m1):
            res2 = mathfn(res2, m1[i, j])
        self.assertEqual(res1, res2)

        # non-contiguous
        m1 = torch.randn(10, 10, 10)
        m2 = m1[:, 4]
        res1 = torchfn(m2)
        res2 = m2[0, 0]
        for i, j in iter_indices(m2):
            res2 = mathfn(res2, m2[i][j])
        self.assertEqual(res1, res2)

        # with indices
        m1 = torch.randn(100, 100)
        res1val, res1ind = torchfn(m1, 1, False)
        res2val = m1[:, 0:1].clone().squeeze()
        res2ind = res1ind.clone().fill_(0)
        for i, j in iter_indices(m1):
            if mathfn(res2val[i], m1[i, j]) != res2val[i]:
                res2val[i] = m1[i, j]
                res2ind[i] = j

        maxerr = 0
        for i in range(res1val.size(0)):
            maxerr = max(maxerr, abs(res1val[i] - res2val[i]))
            self.assertEqual(res1ind[i], res2ind[i])
        self.assertLessEqual(abs(maxerr), 1e-5)

        # NaNs
        for index in (0, 4, 99):
            m1 = torch.randn(100)
            m1[index] = float('nan')
            res1val, res1ind = torch.max(m1, 0)
            self.assertNotEqual(res1val[0], res1val[0])
            self.assertEqual(res1ind[0], index)
            res1val = torchfn(m1)
            self.assertNotEqual(res1val, res1val)
test_torch.py 文件源码 项目:pytorch 作者: pytorch 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def test_conv3(self):
        x = torch.rand(math.floor(torch.uniform(20, 40)),
                       math.floor(torch.uniform(20, 40)),
                       math.floor(torch.uniform(20, 40)))
        k = torch.rand(math.floor(torch.uniform(5, 10)),
                       math.floor(torch.uniform(5, 10)),
                       math.floor(torch.uniform(5, 10)))
        imvc = torch.conv3(x, k)
        imvc2 = torch.conv3(x, k, 'V')
        imfc = torch.conv3(x, k, 'F')

        ki = k.clone()
        ks = k.storage()
        kis = ki.storage()
        for i in range(ks.size() - 1, 0, -1):
            kis[ks.size() - i + 1] = ks[i]
        imvx = torch.xcorr3(x, ki)
        imvx2 = torch.xcorr3(x, ki, 'V')
        imfx = torch.xcorr3(x, ki, 'F')

        self.assertEqual(imvc, imvc2, 0, 'torch.conv3')
        self.assertEqual(imvc, imvx, 0, 'torch.conv3')
        self.assertEqual(imvc, imvx2, 0, 'torch.conv3')
        self.assertEqual(imfc, imfx, 0, 'torch.conv3')
        self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr3(x, x)[0][0][0]), 4e-10, 'torch.conv3')

        xx = torch.Tensor(2, x.size(1), x.size(2), x.size(3))
        xx[1].copy_(x)
        xx[2].copy_(x)
        kk = torch.Tensor(2, k.size(1), k.size(2), k.size(3))
        kk[1].copy_(k)
        kk[2].copy_(k)

        immvc = torch.conv3(xx, kk)
        immvc2 = torch.conv3(xx, kk, 'V')
        immfc = torch.conv3(xx, kk, 'F')

        self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv3')
        self.assertEqual(immvc[0], imvc, 0, 'torch.conv3')
        self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv3')
        self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv3')
        self.assertEqual(immfc[0], imfc, 0, 'torch.conv3')


问题


面经


文章

微信
公众号

扫码关注公众号