def BFFA(Eval_Func,n=20,m_i=25,minf=0,dim=None,prog=False,gamma=1.0,beta=0.20,alpha=0.25):
"""
input:{ Eval_Func: Evaluate_Function, type is class
n: Number of population, default=20
m_i: Number of max iteration, default=300
minf: minimazation flag, default=0, 0=maximization, 1=minimazation
dim: Number of feature, default=None
prog: Do you want to use a progress bar?, default=False
}
output:{Best value: type float 0.967
Best position: type list(int) [1,0,0,1,.....]
Nunber of 1s in best position: type int [0,1,1,0,1] ? 3
}
"""
estimate=Eval_Func().evaluate
if dim==None:
dim=Eval_Func().check_dimentions(dim)
#flag=dr
global_best=float("-inf") if minf == 0 else float("inf")
pb=float("-inf") if minf == 0 else float("inf")
global_position=tuple([0]*dim)
gen=tuple([0]*dim)
#gamma=1.0
#beta=0.20
#alpha=0.25
gens_dict = {tuple([0]*dim):float("-inf") if minf == 0 else float("inf")}
#gens_dict[global_position]=0.001
gens=random_search(n,dim)
#vs = [[random.choice([0,1]) for i in range(length)] for i in range(N)]
for gen in gens:
if tuple(gen) in gens_dict:
score = gens_dict[tuple(gen)]
else:
score=estimate(gen)
gens_dict[tuple(gen)]=score
if score > global_best:
global_best=score
global_position=dc(gen)
if prog:
miter=tqdm(range(m_i))
else:
miter=range(m_i)
for it in miter:
for i,x in enumerate(gens):
for j,y in enumerate(gens):
if gens_dict[tuple(y)] < gens_dict[tuple(x)]:
gens[j]=exchange_binary(y,gens_dict[tuple(y)])
gen = gens[j]
if tuple(gen) in gens_dict:
score = gens_dict[tuple(gen)]
else:
score=estimate(gens[j])
gens_dict[tuple(gen)]=score
if score > global_best if minf==0 else score < global_best:
global_best=score
global_position=dc(gen)
return global_best,global_position,global_position.count(1)
python类gamma()的实例源码
binary_optimization.py 文件源码
项目:binary_swarm_intelligence
作者: Sanbongawa
项目源码
文件源码
阅读 25
收藏 0
点赞 0
评论 0
def test_gautschi_how_to_and_how_not_to():
'''Test Gautschi's famous example from
W. Gautschi,
How and how not to check Gaussian quadrature formulae,
BIT Numerical Mathematics,
June 1983, Volume 23, Issue 2, pp 209–216,
<https://doi.org/10.1007/BF02218441>.
'''
points = numpy.array([
1.457697817613696e-02,
8.102669876765460e-02,
2.081434595902250e-01,
3.944841255669402e-01,
6.315647839882239e-01,
9.076033998613676e-01,
1.210676808760832,
1.530983977242980,
1.861844587312434,
2.199712165681546,
2.543839804028289,
2.896173043105410,
3.262066731177372,
3.653371887506584,
4.102376773975577,
])
weights = numpy.array([
3.805398607861561e-2,
9.622028412880550e-2,
1.572176160500219e-1,
2.091895332583340e-1,
2.377990401332924e-1,
2.271382574940649e-1,
1.732845807252921e-1,
9.869554247686019e-2,
3.893631493517167e-2,
9.812496327697071e-3,
1.439191418328875e-3,
1.088910025516801e-4,
3.546866719463253e-6,
3.590718819809800e-8,
5.112611678291437e-11,
])
# weight function exp(-t**3/3)
n = len(points)
moments = numpy.array([
3.0**((k-2)/3.0) * math.gamma((k+1) / 3.0)
for k in range(2*n)
])
alpha, beta = orthopy.line.coefficients_from_gauss(points, weights)
# alpha, beta = orthopy.line.chebyshev(moments)
errors_alpha, errors_beta = \
orthopy.line.check_coefficients(moments, alpha, beta)
assert numpy.max(errors_alpha) > 1.0e-2
assert numpy.max(errors_beta) > 1.0e-2
return