python类acos()的实例源码

utils.py 文件源码 项目:bpy_lambda 作者: bcongdon 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def align_bone_z_axis(obj, bone, vec):
    """ Rolls the bone to align its z-axis as closely as possible to
        the given vector.
        Must be in edit mode.
    """
    bone_e = obj.data.edit_bones[bone]

    vec = bone_e.y_axis.cross(vec)
    vec.normalize()

    dot = max(-1.0, min(1.0, bone_e.x_axis.dot(vec)))
    angle = math.acos(dot)

    bone_e.roll += angle

    dot1 = bone_e.x_axis.dot(vec)

    bone_e.roll -= angle * 2

    dot2 = bone_e.x_axis.dot(vec)

    if dot1 > dot2:
        bone_e.roll += angle * 2
cpv.py 文件源码 项目:ssbio 作者: SBRG 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def get_angle_formed_by(p1,p2,p3): # angle formed by three positions in space

    # based on code submitted by Paul Sherwood
    r1 = distance(p1,p2)
    r2 = distance(p2,p3)
    r3 = distance(p1,p3)

    small = 1.0e-10

    if (r1 + r2 - r3) < small:
        # This seems to happen occasionally for 180 angles 
        theta = math.pi
    else:
        theta = math.acos( (r1*r1 + r2*r2  - r3*r3) / (2.0 * r1*r2) )
    return theta;

#------------------------------------------------------------------------------
ArcItem.py 文件源码 项目:CPNSimulatorGui 作者: chris-kuhr 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def setPolygon(self):
        '''Calculate position and rotation of the arc arrow head.'''
        rotDeg = 0            
        xlength = self.pos1.x() - self.pos2.x()
        ylength = self.pos1.y() - self.pos2.y()
        d = math.sqrt( math.pow( xlength , 2) + math.pow( ylength , 2) )        
        if d > 0:
            beta = math.acos( xlength / d )
            rotDeg = math.degrees( beta ) 

        self.arrowPolygonObject.setPolygon( QtGui.QPolygonF( [
                                                 QtCore.QPointF( (self.pos2.x() -10),  (self.pos2.y() +5)), 
                                                 QtCore.QPointF( (self.pos2.x() -10) , (self.pos2.y() -5)), 
                                                 QtCore.QPointF(       self.pos2.x() ,      self.pos2.y())
                                                 ] ) ) 

        self.arrowPolygonObject.setBrush( QtGui.QBrush(QtCore.Qt.black) )

        """ self.angle()!!!!!!!!!"""
#         self.arcLinePolygon.angle()
#         self.arcLinePolygon.rotate(rotDeg)
#         self.arcLinePolygon.setPos( self.pos2 ) 

    #------------------------------------------------------------------------------------------------
ArrowGui.py 文件源码 项目:CPNSimulatorGui 作者: chris-kuhr 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def setPolygon(self):
        rotDeg = 0            
        xlength = self.pos1.x() - self.pos2.x()
        ylength = self.pos1.y() - self.pos2.y()
        d = math.sqrt( math.pow( xlength , 2) + math.pow( ylength , 2) )        
        if d > 0:
            beta = math.acos( xlength / d )
            rotDeg = math.degrees( beta ) 

        self.arcLinePolygon.setPolygon( QtGui.QPolygonF( [
                                                 QtCore.QPointF( (self.pos2.x() -10),  (self.pos2.y() +5)), 
                                                 QtCore.QPointF( (self.pos2.x() -10) , (self.pos2.y() -5)), 
                                                 QtCore.QPointF(       self.pos2.x() ,      self.pos2.y())
                                                 ] ) ) 

        self.arcLinePolygon.setBrush( QtGui.QBrush(QtCore.Qt.black) )

        """ self.angle()!!!!!!!!!"""
#         self.arcLinePolygon.angle()
#         self.arcLinePolygon.rotate(rotDeg)
#         self.arcLinePolygon.setPos( self.pos2 ) 
    #------------------------------------------------------------------------------------------------
operators.py 文件源码 项目:Gaia 作者: splcurran 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def eLowDotOperator(stack, z, mode):
    if mode == 1:   # num
        stack.append(utilities.formatNum(math.acos(z)))
    #elif mode == 2:
    elif mode == 3: # str or list
        if len(z) == 0:
            stack.append([])
        else:
            result = ""
            for i in z:
                i = utilities.castToList(i)
                if len(i) >= 2:
                    if type(i[1]) == str and type(result) == str:
                        result += (i[1] * utilities.castToNumber(i[0]))
                    else:
                        result = list(result)
                        result += [i[1]] * utilities.castToNumber(i[0])
            stack.append(result)
    else:
        monadNotImplemented(mode, '')

# ?
calibrator.py 文件源码 项目:camera_calibration_frontend 作者: groundmelon 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _get_skew(corners, board):
    """
    Get skew for given checkerboard detection.
    Scaled to [0,1], which 0 = no skew, 1 = high skew
    Skew is proportional to the divergence of three outside corners from 90 degrees.
    """
    # TODO Using three nearby interior corners might be more robust, outside corners occasionally
    # get mis-detected
    up_left, up_right, down_right, _ = _get_outside_corners(corners, board)

    def angle(a, b, c):
        """
        Return angle between lines ab, bc
        """
        ab = a - b
        cb = c - b
        return math.acos(numpy.dot(ab,cb) / (numpy.linalg.norm(ab) * numpy.linalg.norm(cb)))

    skew = min(1.0, 2. * abs((math.pi / 2.) - angle(up_left, up_right, down_right)))
    return skew
fanchart.py 文件源码 项目:gprime 作者: GenealogyCollective 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def get_max_width_for_circles(self, rad1, rad2, max_centering_proportion):
        r"""
        (the "r" in the above line is to keep pylint happy)
           __
          /__\ <- compute the line width which is drawable between 2 circles.
         /  _ \   max_centering_proportion : 0, touching the circle1, 1,
        |  |_| |   touching the circle2, 0.5 : middle between the 2 circles
        |      |
         \    /
          \__/
                 basically, max_centering_proportion is
                 max_centering_proportion/nb_lines
        """
        # radius at the center of the 2 circles
        rmid = rad2 - (rad2-rad1)*max_centering_proportion
        return sin(acos(rmid/rad2)) * rad2 * 2
art2polyarea.py 文件源码 项目:bpy_lambda 作者: bcongdon 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def _Angle(u, v):
    """Return angle between two vectors.

    Args:
      u: (float, float)
      v: (float, float)
    Returns:
      float - angle in radians between u and v, where
        it is +/- depending on sign of ux * vy - uy * vx
    """

    (ux, uy) = u
    (vx, vy) = v
    costheta = (ux * vx + uy * vy) / \
        (math.sqrt(ux ** 2 + uy ** 2) * math.sqrt(vx ** 2 + vy ** 2))
    if costheta > 1.0:
        costheta = 1.0
    if costheta < -1.0:
        costheta = -1.0
    theta = math.acos(costheta)
    if ux * vy - uy * vx < 0.0:
        theta = -theta
    return theta
triquad.py 文件源码 项目:bpy_lambda 作者: bcongdon 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def Angle(a, b, c, points):
    """Return Angle abc in degrees, in range [0,180),
    where a,b,c are indices into points."""

    u = Sub2(points.pos[c], points.pos[b])
    v = Sub2(points.pos[a], points.pos[b])
    n1 = Length2(u)
    n2 = Length2(v)
    if n1 == 0.0 or n2 == 0.0:
        return 0.0
    else:
        costheta = Dot2(u, v) / (n1 * n2)
        if costheta > 1.0:
            costheta = 1.0
        if costheta < - 1.0:
            costheta = - 1.0
        return math.acos(costheta) * 180.0 / math.pi
archipack_2d.py 文件源码 项目:bpy_lambda 作者: bcongdon 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def proj_xy(self, t, next=None):
        """
            length of projection of sections at crossing line / circle intersections
            deformation unit vector for profil in xy axis
            so f(x_profile) = position of point in xy plane
        """
        if next is None:
            return self.normal(t).v.normalized(), 1
        v0 = self.normal(1).v.normalized()
        v1 = next.normal(0).v.normalized()
        direction = v0 + v1
        adj = (v0 * self.length) * (v1 * next.length)
        hyp = (self.length * next.length)
        c = min(1, max(-1, adj / hyp))
        size = 1 / cos(0.5 * acos(c))
        return direction.normalized(), min(3, size)
io_export_md3.py 文件源码 项目:bpy_lambda 作者: bcongdon 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def Encode(self, normal):
        x = normal[0]
        y = normal[1]
        z = normal[2]
        # normalize
        l = math.sqrt((x*x) + (y*y) + (z*z))
        if l == 0:
            return 0
        x = x/l
        y = y/l
        z = z/l

        if (x == 0.0) & (y == 0.0) :
            if z > 0.0:
                return 0
            else:
                return (128 << 8)

        lng = math.acos(z) * 255 / (2 * math.pi)
        lat = math.atan2(y, x) * 255 / (2 * math.pi)
        retval = ((int(lat) & 0xFF) << 8) | (int(lng) & 0xFF)
        return retval
triquad.py 文件源码 项目:bpy_lambda 作者: bcongdon 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def Angle(a, b, c, points):
    """Return Angle abc in degrees, in range [0,180),
    where a,b,c are indices into points."""

    u = Sub2(points.pos[c], points.pos[b])
    v = Sub2(points.pos[a], points.pos[b])
    n1 = Length2(u)
    n2 = Length2(v)
    if n1 == 0.0 or n2 == 0.0:
        return 0.0
    else:
        costheta = Dot2(u, v) / (n1 * n2)
        if costheta > 1.0:
            costheta = 1.0
        if costheta < - 1.0:
            costheta = - 1.0
        return math.acos(costheta) * 180.0 / math.pi
delta.py 文件源码 项目:bpy_lambda 作者: bcongdon 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def set_mat(obj, bone_name, matrix):
        """ Sets the bone to have the given transform matrix.
        """
        a = obj.data.edit_bones[bone_name]

        a.head = (0, 0, 0)
        a.tail = (0, 1, 0)

        a.transform(matrix)

        d = acos(a.matrix.to_quaternion().dot(matrix.to_quaternion())) * 2.0

        roll_1 = a.roll + d
        roll_2 = a.roll - d

        a.roll = roll_1
        d1 = a.matrix.to_quaternion().dot(matrix.to_quaternion())
        a.roll = roll_2
        d2 = a.matrix.to_quaternion().dot(matrix.to_quaternion())

        if d1 > d2:
            a.roll = roll_1
        else:
            a.roll = roll_2
utils.py 文件源码 项目:bpy_lambda 作者: bcongdon 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def angle_on_plane(plane, vec1, vec2):
    """ Return the angle between two vectors projected onto a plane.
    """
    plane.normalize()
    vec1 = vec1 - (plane * (vec1.dot(plane)))
    vec2 = vec2 - (plane * (vec2.dot(plane)))
    vec1.normalize()
    vec2.normalize()

    # Determine the angle
    angle = math.acos(max(-1.0, min(1.0, vec1.dot(vec2))))

    if angle < 0.00001:  # close enough to zero that sign doesn't matter
        return angle

    # Determine the sign of the angle
    vec3 = vec2.cross(vec1)
    vec3.normalize()
    sign = vec3.dot(plane)
    if sign >= 0:
        sign = 1
    else:
        sign = -1

    return angle * sign
utils.py 文件源码 项目:bpy_lambda 作者: bcongdon 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def align_bone_x_axis(obj, bone, vec):
    """ Rolls the bone to align its x-axis as closely as possible to
        the given vector.
        Must be in edit mode.
    """
    bone_e = obj.data.edit_bones[bone]

    vec = vec.cross(bone_e.y_axis)
    vec.normalize()

    dot = max(-1.0, min(1.0, bone_e.z_axis.dot(vec)))
    angle = math.acos(dot)

    bone_e.roll += angle

    dot1 = bone_e.z_axis.dot(vec)

    bone_e.roll -= angle * 2

    dot2 = bone_e.z_axis.dot(vec)

    if dot1 > dot2:
        bone_e.roll += angle * 2
delta.py 文件源码 项目:bpy_lambda 作者: bcongdon 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def set_mat(obj, bone_name, matrix):
        """ Sets the bone to have the given transform matrix.
        """
        a = obj.data.edit_bones[bone_name]

        a.head = (0, 0, 0)
        a.tail = (0, 1, 0)

        a.transform(matrix)

        d = acos(a.matrix.to_quaternion().dot(matrix.to_quaternion())) * 2.0

        roll_1 = a.roll + d
        roll_2 = a.roll - d

        a.roll = roll_1
        d1 = a.matrix.to_quaternion().dot(matrix.to_quaternion())
        a.roll = roll_2
        d2 = a.matrix.to_quaternion().dot(matrix.to_quaternion())

        if d1 > d2:
            a.roll = roll_1
        else:
            a.roll = roll_2
utils.py 文件源码 项目:bpy_lambda 作者: bcongdon 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def angle_on_plane(plane, vec1, vec2):
    """ Return the angle between two vectors projected onto a plane.
    """
    plane.normalize()
    vec1 = vec1 - (plane * (vec1.dot(plane)))
    vec2 = vec2 - (plane * (vec2.dot(plane)))
    vec1.normalize()
    vec2.normalize()

    # Determine the angle
    angle = math.acos(max(-1.0, min(1.0, vec1.dot(vec2))))

    if angle < 0.00001:  # close enough to zero that sign doesn't matter
        return angle

    # Determine the sign of the angle
    vec3 = vec2.cross(vec1)
    vec3.normalize()
    sign = vec3.dot(plane)
    if sign >= 0:
        sign = 1
    else:
        sign = -1

    return angle * sign
move_view_lib.py 文件源码 项目:DHP 作者: YuhangSong 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def get_sph_cor(x,y,z):    #using radian
    lon=0
    if(x==0 and y>0):
        lon=PI/2
    elif(x==0 and y<0):
        lon=3*PI/2
    elif(x==0 and y==0):
        print ("error")
        return
    elif(x>0 and y==0):
        lon=0
    elif(x>0 and y>0):
        lon=math.atan(float(y)/float(x))
    elif(x>0 and y<0):
        lon=2*PI+math.atan(float(y)/float(x))
    elif(x<0 and y==0):
        lon=PI
    elif(x<0 and y>0):
        lon=PI+math.atan(float(y)/float(x))
    elif(x<0 and y<0):
        lon=PI+math.atan(float(y)/float(x))

    lat=PI/2-math.acos(z/1.0)

    return lon,lat
SPIND.py 文件源码 项目:SPIND 作者: LiuLab-CSRC 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def calc_rotation_matrix(q1, q2, ref_q1, ref_q2):
  ref_nv = np.cross(ref_q1, ref_q2) 
  q_nv = np.cross(q1, q2)
  if min(norm(ref_nv), norm(q_nv)) == 0.:  # avoid 0 degree including angle
    return np.identity(3)
  axis = np.cross(ref_nv, q_nv)
  angle = rad2deg(acos(ref_nv.dot(q_nv) / (norm(ref_nv) * norm(q_nv))))
  R1 = axis_angle_to_rotation_matrix(axis, angle)
  rot_ref_q1, rot_ref_q2 = R1.dot(ref_q1), R1.dot(ref_q2)  # rotate ref_q1,2 plane to q1,2 plane

  cos1 = max(min(q1.dot(rot_ref_q1) / (norm(rot_ref_q1) * norm(q1)), 1.), -1.)  # avoid math domain error
  cos2 = max(min(q2.dot(rot_ref_q2) / (norm(rot_ref_q2) * norm(q2)), 1.), -1.)
  angle1 = rad2deg(acos(cos1))
  angle2 = rad2deg(acos(cos2))
  angle = (angle1 + angle2) / 2.
  axis = np.cross(rot_ref_q1, q1)
  R2 = axis_angle_to_rotation_matrix(axis, angle)

  R = R2.dot(R1)
  return R
q_ffld2q.py 文件源码 项目:cadee 作者: kamerlinlab 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def calc_angle(ac1, ac2, ac3, fk, th0):
    th0 = math.pi/180.0 * th0   # degrees to radians
    rji1 = ac1[0] - ac2[0]
    rji2 = ac1[1] - ac2[1]
    rji3 = ac1[2] - ac2[2]
    rjk1 = ac3[0] - ac2[0]
    rjk2 = ac3[1] - ac2[1]
    rjk3 = ac3[2] - ac2[2]

    # get the angle from the dot product equation ( A*B = |A|*|B|*cos(theta) )
    # where A and B are vectors bewteen atoms (1->2 and 2->3)
    bji2inv = 1./(rji1**2 + rji2**2 + rji3**2)
    bjk2inv = 1./(rjk1**2 + rjk2**2 + rjk3**2)
    bjiinv = math.sqrt(bji2inv)
    bjkinv = math.sqrt(bjk2inv)
    scp = (rji1*rjk1 + rji2*rjk2 + rji3*rjk3)
    scp = scp * bjiinv* bjkinv
    if scp > 1.0:
        scp =  1.0
    elif scp < -1.0:
        scp = -1.0
    theta = math.acos(scp)   # in radians
    dtheta = (theta-th0)  
    en = 0.5*fk*dtheta**2 
    return en,theta*180.0/math.pi    # kcal/mol and degrees
plot_rotation.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_spherical_rotatation(p1, p2, width, height, theta_multiplier):
    v1 = get_sphere_mapping(p1[0], p1[1], width, height)
    v2 = get_sphere_mapping(p2[0], p2[1], width, height)

    d = min(max([dot(v1, v2), -1]), 1)

    if abs(d - 1.0) < 0.000001:
        return None

    raxis = norm( cross(v1, v2) )
    rtheta = theta_multiplier * rad2deg * _acos(d)
    #rtheta = 2.0 * rad2deg * _acos(d)

    glPushMatrix()
    glLoadIdentity()
    glRotatef(rtheta, *raxis)
    mat = (c_float*16)()
    glGetFloatv(GL_MODELVIEW_MATRIX, mat)
    glPopMatrix()

    return mat
quaternion.py 文件源码 项目:cvcalib 作者: Algomorph 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def _get_angle_axis(self):
        lim = 1e-12
        norm = np.linalg.norm(self.q)
        if norm < lim:
            angle = 0
            axis = [0, 0, 0]
        else:
            rnorm = 1.0 / norm
            angle = acos(max(-1, min(1, rnorm * self.q[3])));
            sangle = sin(angle)
            if sangle < lim:
                axis = [0, 0, 0]
            else:
                axis = (rnorm / sangle) * np.array(self.q[0:3])

            angle *= 2

        return (angle, axis)
quaternion.py 文件源码 项目:cvcalib 作者: Algomorph 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def slerp(qa, qb, t):
        # Calculate angle between them.
        #qa.w * qb.w + qa.x * qb.x + qa.y * qb.y + qa.z * qb.z;
        cosHalfTheta = np.dot(qa.q,qb.q)
        #if qa=qb or qa=-qb then theta = 0 and we can return qa
        if (abs(cosHalfTheta) >= 1.0):
            return Quat(np.copy(qa.q));
        #Calculate temporary values.
        halfTheta = acos(cosHalfTheta);
        sinHalfTheta = sqrt(1.0 - cosHalfTheta*cosHalfTheta);

        #if theta = 180 degrees then result is not fully defined
        #we could rotate around any axis normal to qa or qb
        if(abs(sinHalfTheta) < 0.001):
            return Quat(qa.q * 0.5 + qb.q * 0.5);

        ratioA = sin((1 - t) * halfTheta) / sinHalfTheta;
        ratioB = sin(t * halfTheta) / sinHalfTheta; 
        #calculate Quaternion for general case.
        return Quat(qa.q * ratioA + qb.q * ratioB);
blender_cnt.py 文件源码 项目:blender-cnt 作者: bcorso 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def __init__(self, lattice, m, n):
        self.lattice = lattice
        self.m = m
        self.n = n

        # Chiral vector
        self.c = lattice.pos(m,n)
        self.magC = mag(self.c)
        # Translation vector 
        d = gcd(2*n+m,2*m+n)
        self.t = lattice.pos((2*n+m)/d, -(2*m+n)/d);
        self.magT = mag(self.t)
        # Chiral rotation matrix (rotate a1 along x-axis)
        self.theta = acos(norm(self.c)[0]*copysign(1, self.c[1]))
        self.rotM = np.array([
                [cos(self.theta), sin(self.theta)],
                [-sin(self.theta), cos(self.theta)]]).T

        # Calculate atoms and bonds in unit cell
        self._boundsErr = mag(lattice.pos(0,0,0) - lattice.pos(0,0,1))
        self.indices = self._calcIndices(m, n)
        self.atoms = self._calcAtoms(self.indices)
        self.bonds = self._calcBonds(self.indices)
tf_conv.py 文件源码 项目:srcsim2017 作者: ZarjRobotics 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def compute_distance_to_wall(a, r1, r2):
    """ Given a sighting that determines a distance of r1 to the wall, and then a rotation by angle *a*
        to the left and a sighting of distance r2, returns the angle that we are currently rotated by
        from the perpendicular to the wall and the current distance to the wall as a pair tuple. Angle
        is given in degrees before the rotation from r1 to r2. Rotating to the right by this angle
        should cause us to face the wall directly.
    """
    try:
        if r1 < r2:
            r = r1/r2
            i = 1.0
        elif r1 > r2:
            r = r2/r1
            i = -1.0
        else:
            return 0, r2
        d = radians(a)
        c = cos(d)
        s = sin(d)
        dt = sqrt(1 - c * c * r * r)
        x = c * c * r + s * dt
        return degrees(acos(x)) * i, r2 * x
    except ValueError:
        traceback.print_exc()
        return None, None
janus_fc_dat.py 文件源码 项目:FC 作者: JanusWind 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def calc_eff_area( self, v ) :

        # Note. #nvn is a vector similar to inflow particle bulk 
        # velocity and ndir is the look direction. 


        # Normalize the particle velocity.

        vn  = calc_arr_norm( v )
        nvn = tuple( [ -c for c in vn ] )

        # Calculate the particle inflow angle (in degrees) relative to
        # the cup normal (i.e., the cup pointing direction).

        psi = acos( calc_arr_dot( self['dir'], nvn ) )*pi/180.
        if ( psi > 90. ) :
            return 0. 

        # Return the effective collecting area corresponding to "psi".

        return interp( psi, self._spec._eff_deg, self._spec._eff_area )

    #-----------------------------------------------------------------------
    # DEFINE THE FUNCTION TO CALCULATE EXPECTED MAXWELLIAN CURRENT.
    #-----------------------------------------------------------------------
td.py 文件源码 项目:kicad_scripts 作者: NilujePerchut 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __ComputeCurved(vpercent, w, vec, via, pts, segs):
    """Compute the curves part points"""

    radius = via[1]/2.0

    # Compute the bezier middle points
    req_angle = asin(vpercent/100.0)
    oppside = tan(req_angle)*(radius-(w/sin(req_angle)))
    length = sqrt(radius*radius + oppside*oppside)
    d = req_angle - acos(radius/length)
    vecBC = [vec[0]*cos(d)+vec[1]*sin(d), -vec[0]*sin(d)+vec[1]*cos(d)]
    pointBC = via[0] + wxPoint(int(vecBC[0] * length), int(vecBC[1] * length))
    d = -d
    vecAE = [vec[0]*cos(d)+vec[1]*sin(d), -vec[0]*sin(d)+vec[1]*cos(d)]
    pointAE = via[0] + wxPoint(int(vecAE[0] * length), int(vecAE[1] * length))

    curve1 = __Bezier(pts[1], pointBC, pts[2], n=segs)
    curve2 = __Bezier(pts[4], pointAE, pts[0], n=segs)

    return curve1 + [pts[3]] + curve2
canvas.py 文件源码 项目:roLabelImg 作者: cgvict 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def getAngle(self, center, p1, p2):
        dx1 = p1.x() - center.x();
        dy1 = p1.y() - center.y();

        dx2 = p2.x() - center.x();
        dy2 = p2.y() - center.y();

        c = math.sqrt(dx1*dx1 + dy1*dy1) * math.sqrt(dx2*dx2 + dy2*dy2)
        if c == 0: return 0
        y = (dx1*dx2+dy1*dy2)/c
        if y>1: return 0
        angle = math.acos(y)

        if (dx1*dy2-dx2*dy1)>0:   
            return angle
        else:
            return -angle
misc.py 文件源码 项目:seaglass 作者: seaglass-project 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def earth_distance(lat1, lon1, lat2, lon2):
    """ Distance in meters between two points specified in degrees. """
    x1 = calc_rad(lat1) * math.cos(degree_to_radian(lon1)) * math.sin(degree_to_radian(90-lat1))
    x2 = calc_rad(lat2) * math.cos(degree_to_radian(lon2)) * math.sin(degree_to_radian(90-lat2))
    y1 = calc_rad(lat1) * math.sin(degree_to_radian(lon1)) * math.sin(degree_to_radian(90-lat1))
    y2 = calc_rad(lat2) * math.sin(degree_to_radian(lon2)) * math.sin(degree_to_radian(90-lat2))
    z1 = calc_rad(lat1) * math.cos(degree_to_radian(90-lat1))
    z2 = calc_rad(lat2) * math.cos(degree_to_radian(90-lat2))
    a = (x1*x2 + y1*y2 + z1*z2)/pow(calc_rad((lat1+lat2)/2), 2)
    # a should be in [1, -1] but can sometimes fall outside it by
    # a very small amount due to rounding errors in the preceding
    # calculations (this is prone to happen when the argument points
    # are very close together).  Thus we constrain it here.
    if abs(a) > 1:
        a = 1
    elif a < -1:
        a = -1
    return calc_rad((lat1+lat2) / 2) * math.acos(a)
spectrum_solargeometry.py 文件源码 项目:gpvdm 作者: roderickmackenzie 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_zenith(Latitude, Longitude, d, hour, minute, timezone):
    gamma_val = ((2 * math.pi) / 365) * ((d - 1) + (hour - 12) / 24)
    decl_angle = 0.006918 - (0.399912 * math.cos(gamma_val)) + 0.070257 * math.sin(gamma_val) - 0.006758 * math.cos(
        2 * gamma_val) \
                 + 0.000907 * math.sin(2 * gamma_val) - 0.002697 * math.cos(3 * gamma_val) + 0.00148 * math.sin(
        3 * gamma_val)
    eq_time = 229.18 * (
        0.000075 + 0.001868 * math.cos(gamma_val) - 0.032077 * math.sin(gamma_val) - 0.014615 * math.cos(2 * gamma_val)
        - 0.040849 * math.sin(2 * gamma_val))
    time_offset = eq_time - 4 * Longitude + 60*timezone
    true_solar_time = hour * 60 + minute + time_offset
    solar_hour_angle = true_solar_time / 4 - 180

    Z_deg = (180/math.pi)*math.acos((math.sin(Latitude * (math.pi / 180)) * math.sin(decl_angle)) + (
        math.cos(Latitude * (math.pi / 180)) * math.cos(decl_angle) * math.cos(solar_hour_angle * (math.pi / 180))))
    return Z_deg


问题


面经


文章

微信
公众号

扫码关注公众号