python类log10()的实例源码

util.py 文件源码 项目:Projects 作者: it2school 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def majorize(values):
    """Filter sequence to return only major considered numbers"""
    sorted_values = sorted(values)
    if len(values) <= 3 or (
            abs(2 * sorted_values[1] - sorted_values[0] - sorted_values[2]) >
            abs(1.5 * (sorted_values[1] - sorted_values[0]))):
        return []
    values_step = sorted_values[1] - sorted_values[0]
    full_range = sorted_values[-1] - sorted_values[0]
    step = 10 ** int(log10(full_range))
    if step == values_step:
        step *= 10
    step_factor = 10 ** (int(log10(step)) + 1)
    if round(step * step_factor) % (round(values_step * step_factor) or 1):
        # TODO: Find lower common multiple instead
        step *= values_step
    if full_range <= 2 * step:
        step *= .5
    elif full_range >= 5 * step:
        step *= 5
    major_values = [
        value for value in values if value / step == round(value / step)]
    return [value for value in sorted_values if value in major_values]
util.py 文件源码 项目:Projects 作者: it2school 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def compute_logarithmic_scale(min_, max_, min_scale, max_scale):
    """Compute an optimal scale for logarithmic"""
    if max_ <= 0 or min_ <= 0:
        return []
    min_order = int(floor(log10(min_)))
    max_order = int(ceil(log10(max_)))
    positions = []
    amplitude = max_order - min_order
    if amplitude <= 1:
        return []
    detail = 10.
    while amplitude * detail < min_scale * 5:
        detail *= 2
    while amplitude * detail > max_scale * 3:
        detail /= 2
    for order in range(min_order, max_order + 1):
        for i in range(int(detail)):
            tick = (10 * i / detail or 1) * 10 ** order
            tick = round_to_scale(tick, tick)
            if min_ <= tick <= max_ and tick not in positions:
                positions.append(tick)
    return positions
frame.py 文件源码 项目:odr-stream-router 作者: digris 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def get_audio_levels(self):
        """
        Returns a tuple with left and right audio levels, or (None, None) if frame is not valid
        """
        if not self.version_is_valid():
            return (None, None)
        else:
            int16_max = 0x7FFF
            if self.audiolevel_left:
                dB_l = int(20*math.log10(float(self.audiolevel_left) / int16_max))
            else:
                dB_l = -90

            if self.audiolevel_right:
                dB_r = int(20*math.log10(float(self.audiolevel_right) / int16_max))
            else:
                dB_r = -90

            return (dB_l, dB_r)
test_vad.py 文件源码 项目:vad 作者: bond005 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_calculate_SNR_positive_1(self):
        source_array = [89, -89] * 6000 + [502, -502] * 8000 + [89, -89] * 7000
        source_data = reduce(
            lambda a, b: a + struct.pack('>h', b), source_array[1:], struct.pack('>h', source_array[0])
        )
        sampling_frequency = 8000
        bounds_of_speech = [(2.0 * 6000.0 / sampling_frequency, 2.0 * (6000.0 + 8000.0) / sampling_frequency)]
        silence_energy = reduce(
            lambda a, b: a + b * b,
            source_array[0:(2 * 6000)] + source_array[(2 * (6000 + 8000)):],
            vad.EPS
        ) / (2.0 * (6000.0 + 7000.0))
        speech_energy = reduce(
            lambda a, b: a + b * b,
            source_array[(2 * 6000):(2 * (6000 + 8000))],
            vad.EPS
        ) / (2.0 * 8000.0)
        target_snr = 20.0 * math.log10(speech_energy / silence_energy)
        self.assertAlmostEqual(target_snr, vad.calculate_SNR(source_data, sampling_frequency, bounds_of_speech))
vad.py 文件源码 项目:vad 作者: bond005 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def calculate_features_for_VAD(sound_frames, frequencies_axis, spectrogram):
    features = numpy.empty((spectrogram.shape[0], 3))
    # smooted_spectrogram, smoothed_frequencies_axis = smooth_spectrogram(spectrogram, frequencies_axis, 24)
    for time_ind in range(spectrogram.shape[0]):
        mean_spectrum = spectrogram[time_ind].mean()
        if mean_spectrum > 0.0:
            sfm = -10.0 * math.log10(stats.gmean(spectrogram[time_ind]) / mean_spectrum)
        else:
            sfm = 0.0
        # max_freq = smoothed_frequencies_axis[smooted_spectrogram[time_ind].argmax()]
        max_freq = frequencies_axis[spectrogram[time_ind].argmax()]
        features[time_ind][0] = numpy.square(sound_frames[time_ind]).mean()
        features[time_ind][1] = sfm
        features[time_ind][2] = max_freq
    """medfilt_order = 3
    for feature_ind in range(features.shape[0]):
        features[feature_ind] = signal.medfilt(features[feature_ind], medfilt_order)"""
    return features
__init__.py 文件源码 项目:Wall-EEG 作者: neurotechuoft 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def to_data(self, x, y):
        '''Convert window coords to data coords.

        :Parameters:
            `x, y`:
                The coordinates to convert (in window coords).
        '''
        adj_x = float(x - self._plot_area.pos[0])
        adj_y = float(y - self._plot_area.pos[1])
        norm_x = adj_x / self._plot_area.size[0]
        norm_y = adj_y / self._plot_area.size[1]
        if self.xlog:
            xmin, xmax = log10(self.xmin), log10(self.xmax)
            conv_x = 10. ** (norm_x * (xmax - xmin) + xmin)
        else:
            conv_x = norm_x * (self.xmax - self.xmin) + self.xmin
        if self.ylog:
            ymin, ymax = log10(self.ymin), log10(self.ymax)
            conv_y = 10. ** (norm_y * (ymax - ymin) + ymin)
        else:
            conv_y = norm_y * (self.ymax - self.ymin) + self.ymin
        return [conv_x, conv_y]
__init__.py 文件源码 项目:Wall-EEG 作者: neurotechuoft 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def draw(self, *args):
        super(MeshLinePlot, self).draw(*args)
        points = self.points
        mesh = self._mesh
        vert = mesh.vertices
        ind = mesh.indices
        params = self._params
        funcx = log10 if params['xlog'] else lambda x: x
        funcy = log10 if params['ylog'] else lambda x: x
        xmin = funcx(params['xmin'])
        ymin = funcy(params['ymin'])
        diff = len(points) - len(vert) // 4
        size = params['size']
        ratiox = (size[2] - size[0]) / float(funcx(params['xmax']) - xmin)
        ratioy = (size[3] - size[1]) / float(funcy(params['ymax']) - ymin)
        if diff < 0:
            del vert[4 * len(points):]
            del ind[len(points):]
        elif diff > 0:
            ind.extend(range(len(ind), len(ind) + diff))
            vert.extend([0] * (diff * 4))
        for k in range(len(points)):
            vert[k * 4] = (funcx(points[k][0]) - xmin) * ratiox + size[0]
            vert[k * 4 + 1] = (funcy(points[k][1]) - ymin) * ratioy + size[1]
        mesh.vertices = vert
HMM.py 文件源码 项目:Poccala 作者: Byshx 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def __scale_coefficient(self, result, result_index, t, sum_log=False):
        """
        ?????
        :param result:????
        :param result_index:??????
        :param t: ??????
        :param sum_log: ??c_coefficient???
        :return: 
        """
        sum_column = np.sum(result[result_index][:, t], axis=0)
        if sum_column == 0.:
            result[result_index][:, t] = 1. / len(self.__states)
            sum_column = 1.
        result[result_index][:, t] /= sum_column
        if sum_log:
            self.__c_coefficient += math.log10(sum_column)
hud.py 文件源码 项目:ns3-rdma 作者: bobzhuyb 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _compute_divisions(self, xi, xf):
        assert xf > xi
        dx = xf - xi
        size = dx
        ndiv = 5
        text_width = dx/ndiv/2

        def rint(x):
            return math.floor(x+0.5)

        dx_over_ndiv = dx / ndiv
        for n in range(5): # iterate 5 times to find optimum division size
            #/* div: length of each division */
            tbe = math.log10(dx_over_ndiv)#;   /* looking for approx. 'ndiv' divisions in a length 'dx' */
            div = pow(10, rint(tbe))#;  /* div: power of 10 closest to dx/ndiv */
            if math.fabs(div/2 - dx_over_ndiv) < math.fabs(div - dx_over_ndiv): #/* test if div/2 is closer to dx/ndiv */
                div /= 2
            elif math.fabs(div*2 - dx_over_ndiv) < math.fabs(div - dx_over_ndiv):
                div *= 2 #          /* test if div*2 is closer to dx/ndiv */
            x0 = div*math.ceil(xi / div) - div
            if n > 1:
                ndiv = rint(size / text_width)
        return x0, div
graphs.py 文件源码 项目:anki_progress_stats 作者: matthayes 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _round_up_max(max_val):
  "Rounds up a maximum value."

  # Prevent zero values raising an error.  Rounds up to 10 at a minimum.
  max_val = max(10, max_val)

  e = int(math.log10(max_val))
  if e >= 2:
    e -= 1
  m = 10**e
  return math.ceil(float(max_val)/m)*m


# Copied from Anki with the following changes:
# - Set tickDecimals to 0.
# - Update tickFormatter to show 1 decimal unless whole number
# TODO pull request to Anki to include these changes
phred.py 文件源码 项目:sequana 作者: sequana 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def proba_to_quality_sanger(pe):
    """A value between 0 and 93

    :param pe: the probability of error.
    :return: Q is the quality score.

    - a high probability of error (0.99) gives Q=0
    - q low proba of errors (0.05) gives Q = 13
    - q low proba of errors (0.01) gives Q = 20

    """
    if pe > 1:
        pe = 1
    if pe < 1e-90:
        pe = 1e-90
    Qs = -10 * log10(pe)
    if Qs > 93:
        Qs = 93
    return Qs
phred.py 文件源码 项目:sequana 作者: sequana 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def proba_to_quality_solexa(pe):
    """prior v1.3 (ref: wikipedia
    https://en.wikipedia.org/wiki/FASTQ_format
    """
    if pe > 1:
        pe = 1
        return -5

    if pe <1e-90:
        pe = 1e-90
    Qs = -10 * log10(pe/(1-pe))
    if Qs > 62:
        Qs = 62
    if Qs < -5:
        Qs = -5
    return Qs
normalize.py 文件源码 项目:hivemind 作者: steemit 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def rep_log10(rep):
    def log10(string):
        leading_digits = int(string[0:4])
        log = math.log10(leading_digits) + 0.00000001
        num = len(string) - 1
        return num + (log - int(log))

    rep = str(rep)
    if rep == "0":
        return 25

    sign = -1 if rep[0] == '-' else 1
    if sign < 0:
        rep = rep[1:]

    out = log10(rep)
    out = max(out - 9, 0) * sign  # @ -9, $1 earned is approx magnitude 1
    out = (out * 9) + 25          # 9 points per magnitude. center at 25
    return round(out, 2)
classify.py 文件源码 项目:FreeFoodCalendar 作者: Yuliang-Zou 项目源码 文件源码 阅读 92 收藏 0 点赞 0 评论 0
def classify_naive_bayes(X_test, prior, likelihood, num):
    p_not = math.log10(prior[0])
    p_free = math.log10(prior[1])
    not_dict = likelihood[0]
    free_dict = likelihood[1]
    not_num = num[0]
    free_num = num[1]
    voc_num = num[2]
    for word in X_test:
        # not free
        if word in not_dict:
            p_not += math.log10(1.0 * not_dict[word])
        else:
            p_not += math.log10(1.0 / (not_num + voc_num))
        # free
        if word in free_dict:
            p_free += math.log10(1.0 * free_dict[word])
        else:
            p_free += math.log10(1.0 / (free_num + voc_num))
    if p_free >= p_not:
        return True
    else:
        return False
frozen.py 文件源码 项目:kripodb 作者: 3D-e-Chem 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def find(self, query, cutoff, limit=None):
        """Find similar fragments to query.

        Args:
            query (str): Query fragment identifier
            cutoff (float): Cutoff, similarity scores below cutoff are discarded.
            limit (int): Maximum number of hits. Default is None for no limit.

        Returns:
            list[tuple[str,float]]: Hit fragment identifier and similarity score
        """
        precision = float(self.score_precision)
        precision10 = float(10**(floor(log10(precision))))
        scutoff = int(cutoff * precision)
        query_id = self.cache_l2i[query]
        subjects = self.h5file.root.scores[query_id, ...]
        filled_subjects_ids = subjects.nonzero()[0]
        filled_subjects = [(i, subjects[i]) for i in filled_subjects_ids]
        hits = [(self.cache_i2l[k], ceil(precision10 * v / precision) / precision10) for k, v in filled_subjects if v >= scutoff]
        sorted_hits = sorted(hits,  key=lambda r: r[1], reverse=True)
        if limit is not None:
            sorted_hits = sorted_hits[:limit]
        return sorted_hits
frozen.py 文件源码 项目:kripodb 作者: 3D-e-Chem 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __getitem__(self, item):
        """Get all similarities of fragment.

        Self is excluded.

        Args:
            item (STR): Label of a fragment

        Returns:
            list[tuple[str, float]]: list of (fragment_label, score)

        """
        precision = float(self.score_precision)
        precision10 = float(10**(floor(log10(precision))))
        query_id = self.cache_l2i[item]
        subjects = self.h5file.root.scores[query_id, ...]
        hits = [(self.cache_i2l[k], ceil(precision10 * v / precision) / precision10) for k, v in enumerate(subjects) if k != query_id]
        return hits
make_qq_json.py 文件源码 项目:encore 作者: statgen 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def get_conf_int(nvar):
    slices = []
    for x in range(0, int(math.ceil(math.log(nvar,2)))):
        slices.append(2**x)
    slices.append(nvar-1);
    slices.reverse()

    points = []
    for slice in slices:
        rv = scipy.stats.beta(slice, nvar-slice)
        points.append((
            round(-math.log10((slice-0.5)/nvar),2),
            round(-math.log10(rv.ppf(0.05/2)),2), 
            round(-math.log10(rv.ppf(1-(0.05/2))),2)
        ))
    return points
github_stats.py 文件源码 项目:scraper 作者: LLNL 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def write_languages(self, file_path='',date=str(datetime.date.today())):
        """
        Updates languages.csv file with current data.
        """
        self.remove_date(file_path=file_path, date=date)
        languages_exists = os.path.isfile(file_path)
        with open(file_path, 'a') as out_languages:
            if not languages_exists:
                out_languages.write('date,language,count,size,size_log\n')
            languages_sorted = sorted(self.languages_size)
            #self.delete_last_line(date=date, file_path=file_path)
            for language in languages_sorted:
                try:
                    out_languages.write(date + ',' + language + ','
                        + str(self.languages[language]) + ','
                        + str(self.languages_size[language]) + ','
                        + str(math.log10(int(self.languages_size[language])))
                        + '\n')
                except (TypeError, KeyError) as e:
                    out_languages.write(date + ',' + language + ','
                        + str(0) + ','
                        + str(self.languages_size[language]) + ','
                        + str(math.log10(int(self.languages_size[language])))
                        + '\n')
tasks.py 文件源码 项目:aurora 作者: carnby 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def select_tweets(timeline, allow_rts=True, allow_replies=False, popular_only=True):
    texts = []

    for t in timeline:
        if not 'retweeted_status' in t:
            if not allow_replies and t['in_reply_to_status_id_str']:
                continue
            t['tweet_score'] = log(t['retweet_count'] + 1.0) + log(t['favorite_count'] + 1.0)
            t['__is_rt__'] = False
            texts.append(t)
        else:
            if allow_rts:
                t['retweeted_status']['tweet_score'] = log10(t['retweet_count'] + 1.0) + log10(t['favorite_count'] + 1.0)
                t['retweeted_status']['source_created_at'] = t['retweeted_status']['created_at']
                t['retweeted_status']['created_at'] = t['created_at']
                t['retweeted_status']['text'] = t['retweeted_status']['text']
                t['retweeted_status']['__is_rt__'] = True
                texts.append(t['retweeted_status'])

    #texts = sorted(texts, key=lambda x: x['tweet_score'], reverse=True)[0:100]
    if popular_only:
        texts = list(filter(lambda x: x['tweet_score'] > 0, texts))

    return texts
__init__.py 文件源码 项目:caltrac 作者: shiburizu 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def to_data(self, x, y):
        '''Convert window coords to data coords.

        :Parameters:
            `x, y`:
                The coordinates to convert (in window coords).
        '''
        adj_x = float(x - self._plot_area.pos[0])
        adj_y = float(y - self._plot_area.pos[1])
        norm_x = adj_x / self._plot_area.size[0]
        norm_y = adj_y / self._plot_area.size[1]
        if self.xlog:
            xmin, xmax = log10(self.xmin), log10(self.xmax)
            conv_x = 10.**(norm_x * (xmax - xmin) + xmin)
        else:
            conv_x = norm_x * (self.xmax - self.xmin) + self.xmin
        if self.ylog:
            ymin, ymax = log10(self.ymin), log10(self.ymax)
            conv_y = 10.**(norm_y * (ymax - ymin) + ymin)
        else:
            conv_y = norm_y * (self.ymax - self.ymin) + self.ymin
        return [conv_x, conv_y]
__init__.py 文件源码 项目:caltrac 作者: shiburizu 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def draw(self, *args):
        super(MeshLinePlot, self).draw(*args)
        points = self.points
        mesh = self._mesh
        vert = mesh.vertices
        ind = mesh.indices
        params = self._params
        funcx = log10 if params['xlog'] else lambda x: x
        funcy = log10 if params['ylog'] else lambda x: x
        xmin = funcx(params['xmin'])
        ymin = funcy(params['ymin'])
        diff = len(points) - len(vert) // 4
        size = params['size']
        ratiox = (size[2] - size[0]) / float(funcx(params['xmax']) - xmin)
        ratioy = (size[3] - size[1]) / float(funcy(params['ymax']) - ymin)
        if diff < 0:
            del vert[4 * len(points):]
            del ind[len(points):]
        elif diff > 0:
            ind.extend(range(len(ind), len(ind) + diff))
            vert.extend([0] * (diff * 4))
        for k in range(len(points)):
            vert[k * 4] = (funcx(points[k][0]) - xmin) * ratiox + size[0]
            vert[k * 4 + 1] = (funcy(points[k][1]) - ymin) * ratioy + size[1]
        mesh.vertices = vert
pyPhewasCore.py 文件源码 项目:pyPheWAS 作者: BennettLandman 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get_bon_thresh(normalized,power): #same
    """
    Calculate the bonferroni correction threshold.

    Divide the power by the sum of all finite values (all non-nan values).

    :param normalized: an array of all normalized p-values. Normalized p-values are -log10(p) where p is the p-value.
    :param power: the threshold power being used (usually 0.05)
    :type normalized: numpy array
    :type power: float

    :returns: The bonferroni correction
    :rtype: float

    """
    return power/sum(np.isfinite(normalized))
pyProWAS.py 文件源码 项目:pyPheWAS 作者: BennettLandman 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get_bon_thresh(normalized, power):  # same
    """
    Calculate the bonferroni correction threshold.

    Divide the power by the sum of all finite values (all non-nan values).

    :param normalized: an array of all normalized p-values. Normalized p-values are -log10(p) where p is the p-value.
    :param power: the threshold power being used (usually 0.05)
    :type normalized: numpy array
    :type power: float

    :returns: The bonferroni correction
    :rtype: float

    """
    return power / sum(np.isfinite(normalized))
pyPhewasv2.py 文件源码 项目:pyPheWAS 作者: BennettLandman 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_bon_thresh(normalized, power):  # same
    """
    Calculate the bonferroni correction threshold.

    Divide the power by the sum of all finite values (all non-nan values).

    :param normalized: an array of all normalized p-values. Normalized p-values are -log10(p) where p is the p-value.
    :param power: the threshold power being used (usually 0.05)
    :type normalized: numpy array
    :type power: float

    :returns: The bonferroni correction
    :rtype: float

    """
    return power / sum(np.isfinite(normalized))
pyPhewasCorev2.py 文件源码 项目:pyPheWAS 作者: BennettLandman 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get_bon_thresh(normalized,power): #same
    """
    Calculate the bonferroni correction threshold.

    Divide the power by the sum of all finite values (all non-nan values).

    :param normalized: an array of all normalized p-values. Normalized p-values are -log10(p) where p is the p-value.
    :param power: the threshold power being used (usually 0.05)
    :type normalized: numpy array
    :type power: float

    :returns: The bonferroni correction
    :rtype: float

    """
    return power/sum(np.isfinite(normalized))
test_long.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_logs(self):
        LOG10E = math.log10(math.e)

        for exp in list(range(10)) + [100, 1000, 10000]:
            value = 10 ** exp
            log10 = math.log10(value)
            self.assertAlmostEqual(log10, exp)

            # log10(value) == exp, so log(value) == log10(value)/log10(e) ==
            # exp/LOG10E
            expected = exp / LOG10E
            log = math.log(value)
            self.assertAlmostEqual(log, expected)

        for bad in -(1 << 10000), -2, 0:
            self.assertRaises(ValueError, math.log, bad)
            self.assertRaises(ValueError, math.log10, bad)
arrays.py 文件源码 项目:fandango 作者: tango-controls 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def get_histogram(data,n=20,log=False):
    """ Groups data in N steps """
    import math
    mn = logfloor(min(data))
    mx = logroof(max(data))
    print('data=[%e:%e],ranges=[%e:%e]'%(min(data),max(data),mn,mx))
    if log: mn,mx = log10(mn),log10(mx)
    step = float(mx-mn)/n
    print('mn,mx,step = %s, %s, %s'%(mn,mx,step))
    ranges = []
    for i in range(n):     
        r0 = mn+i*step
        r1 = mn+(i+1)*step
        if log: r0,r1 = 10**r0,10**r1
        ranges.append((r0,len([d for d in data if r0<=d<r1])))
    return ranges
datasource.py 文件源码 项目:Peppy 作者: project-owner 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get_channel(self, previous_value, new_value):
        """ Prepares signal value depending on the previous one and algorithm. """

        if self.stereo_algorithm == STEREO_ALGORITHM_NEW:
            channel_value = new_value
        elif self.stereo_algorithm == STEREO_ALGORITHM_LOGARITHM:
            if previous_value == 0.0:
                channel_value = 0.0
            else:
                channel_value = 20 * math.log10(new_value/previous_value)
            if channel_value < -20:
                channel_value = -20
            if channel_value > 3:
                channel_value = 3
            channel_value = (channel_value + 20) * (100/23)
        elif self.stereo_algorithm == STEREO_ALGORITHM_AVERAGE:
            channel_value = statistics.mean([previous_value, new_value])    
        return channel_value
SVMTest.py 文件源码 项目:selfMachineLearning 作者: xhappy 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def visualizeCrossValidation(results):
    # Visualize the cross-validation results
    x_scatter = [math.log10(x[0]) for x in results]
    y_scatter = [math.log10(x[1]) for x in results]

    # plot training accuracy
    marker_size = 100
    colors = [results[x][0] for x in results]
    plt.subplot(2, 1, 1)
    plt.scatter(x_scatter, y_scatter, marker_size, c=colors)
    plt.colorbar()
    plt.xlabel('log learning rate')
    plt.ylabel('log regularization strength')
    plt.title('CIFAR-10 training accuracy')

    # plot validation accuracy
    colors = [results[x][1] for x in results] # default size of markers is 20
    plt.subplot(2, 1, 2)
    plt.scatter(x_scatter, y_scatter, marker_size, c=colors)
    plt.colorbar()
    plt.xlabel('log learning rate')
    plt.ylabel('log regularization strength')
    plt.title('CIFAR-10 validation accuracy')
    plt.show()
tick_locators.py 文件源码 项目:yt 作者: yt-project 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _set_numticks(self):
        self.numticks = 11  # todo; be smart here; this is just for dev

    # def view_limits(self, vmin, vmax):
    #     'Try to choose the view limits intelligently'

    #     if vmax<vmin:
    #         vmin, vmax = vmax, vmin

    #     if vmin==vmax:
    #         vmin-=1
    #         vmax+=1

    #     exponent, remainder = divmod(math.log10(vmax - vmin), 1)

    #     if remainder < 0.5:
    #         exponent -= 1
    #     scale = 10**(-exponent)
    #     vmin = math.floor(scale*vmin)/scale
    #     vmax = math.ceil(scale*vmax)/scale

    #     return mtransforms.nonsingular(vmin, vmax)


问题


面经


文章

微信
公众号

扫码关注公众号