python类pow()的实例源码

ir_baseline.py 文件源码 项目:ParlAI 作者: facebookresearch 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def score_match(query_rep, text, length_penalty, dictionary=None, debug=False):
    if text == "":
        return 0
    if not dictionary:
       words = text.lower().split(' ')
    else:
       words = [w for w in dictionary.tokenize(text.lower())]
    score = 0
    rw = query_rep['words']
    used = {}
    for w in words:
        if w in rw and w not in used:
            score += rw[w]
            if debug:
                print("match: " + w)
        used[w] = True
    norm = math.sqrt(len(used))
    score = score / math.pow(norm * query_rep['norm'], length_penalty)
    return score
dist_fixture.py 文件源码 项目:pyro 作者: uber 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def get_num_samples(self, idx):
        """
        Number of samples needed to estimate the population variance within the tolerance limit
        Sample variance is normally distributed http://stats.stackexchange.com/a/105338/71884
        (see warning below).
        Var(s^2) /approx 1/n * (\mu_4 - \sigma^4)
        Adjust n as per the tolerance needed to estimate the sample variance
        warning: does not work for some distributions like bernoulli - https://stats.stackexchange.com/a/104911
        use the min_samples for explicitly controlling the number of samples to be drawn
        """
        if self.min_samples:
            return self.min_samples
        min_samples = 1000
        tol = 10.0
        required_precision = self.prec / tol
        if not self.scipy_dist:
            return min_samples
        args, kwargs = self.scipy_arg_fn(**self.get_dist_params(idx, wrap_tensor=False))
        try:
            fourth_moment = np.max(self.scipy_dist.moment(4, *args, **kwargs))
            var = np.max(self.scipy_dist.var(*args, **kwargs))
            min_computed_samples = int(math.ceil((fourth_moment - math.pow(var, 2)) / required_precision))
        except (AttributeError, ValueError):
            return min_samples
        return max(min_samples, min_computed_samples)
utils.py 文件源码 项目:census-loader 作者: minus34 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get_tolerance(zoom_level):

    # pixels squared factor
    tolerance_square_pixels = 7

    # default Google/Bing map tile scales
    metres_per_pixel = 156543.03390625 / math.pow(2.0, float(zoom_level + 1))

    # the tolerance (metres) for vector simplification using the VW algorithm
    square_metres_per_pixel = math.pow(metres_per_pixel, 2.0)

    # tolerance to use
    tolerance = square_metres_per_pixel * tolerance_square_pixels

    return tolerance


# maximum number of decimal places for boundary coordinates - improves display performance
SKT_1-8-8 Quadratic_Factorisation.py 文件源码 项目:jsntlib 作者: JarryShaw 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def quadraticFactorisation(N=4):
    (p,q,pn) = primeFactorisation(N)        #??N??????
    for ptr0 in range(len(q)):              #??????????????
        if (q[ptr0] % 2):    q[ptr0] += 1
    if len(p):                              #?????????????
        if p[0] == 2:   p.append(3);    q.append(2)     #??2??????3^2
        else:           p.append(2);    q.append(2)     #??????????2^2

    x = y = 1
    slc = len(p) / 2    #??
    for ptr1 in range(slc):             #?????x
        x *= int(math.pow(p[ptr1],q[ptr1]))
    for ptr2 in range(slc,len(p)):      #?????y
        y *= int(math.pow(p[ptr2],q[ptr2]))
    if (x % 2): x *= 4  #?x?????????4??2^2?
    if (y % 2): y *= 4  #?y?????????4??2^2?

    return solve(x,y)   #?????a?b

#????? | ??????????????????
models.py 文件源码 项目:arithmancer 作者: google 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_price_for_trade(prediction, trade):
  """Returns the price of a trade for a prediction."""
  if trade.contract == 'CONTRACT_ONE':
    old_quantity = prediction.contract_one
    old_quantity_other = prediction.contract_two
  else:
    old_quantity = prediction.contract_two
    old_quantity_other = prediction.contract_one
  if trade.direction == 'BUY':
    new_quantity = old_quantity + trade.quantity
  else:
    new_quantity = old_quantity - trade.quantity
  price = (prediction.liquidity * math.log(
      math.pow(math.e, (new_quantity / prediction.liquidity)) +
      math.pow(math.e, (old_quantity_other / prediction.liquidity)))) - (
          prediction.liquidity * math.log(
              math.pow(math.e, (old_quantity / prediction.liquidity)) +
              math.pow(math.e, (old_quantity_other / prediction.liquidity))))
  return price
nbody.py 文件源码 项目:py_gpumap 作者: ipachev 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def advance(self, dt, padding):
        bodies = self.bodies

        def calc_vel(i):
            b1 = bodies[i]
            for b2 in bodies:
                d_pos = b1.pos.sub(b2.pos)
                distance = d_pos.length() + padding
                mag = dt / math.pow(distance, 3)
                b1.vel = b1.vel.sub(d_pos.scale(b2.mass).scale(mag))

        gpumap(calc_vel, self.indices)

        def update(body):
            body.pos = body.pos.add(body.vel.scale(dt))

        gpumap(update, bodies)
nbody.py 文件源码 项目:py_gpumap 作者: ipachev 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def advance(self, dt, padding):
        bodies = self.bodies

        def calc_vel(i):
            b1 = bodies[i]
            for b2 in bodies:
                d_pos = b1.pos.sub(b2.pos)
                distance = d_pos.length() + padding
                mag = dt / math.pow(distance, 3)
                b1.vel = b1.vel.sub(d_pos.scale(b2.mass).scale(mag))

        list(map(calc_vel, self.indices))

        def update(body):
            body.pos = body.pos.add(body.vel.scale(dt))

        list(map(update, bodies))
eos.py 文件源码 项目:pyqha 作者: mauropalumbo75 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def E_MurnV(V,a0,a1,a2,a3):
    """
    This function implements the Murnaghan EOS (in a form which is best for fitting).
    Returns the energy at the volume *V* using the coefficients *a0,a1,a2,a3* 
    from the equation:

    .. math::
       E = a_0 - (a_2*a_1)/(a_3-1.0) V a_2/a_3 ( a_1/V^{a_3})/(a_3-1.0) +1.0 )

    """
    res=np.zeros(len(V))
    for i in range(0,len(V)):
        res[i]=a0 - a2*a1/(a3-1.0) + V[i]*a2/a3*( pow(a1/V[i],a3)/(a3-1.0)+1.0 )
    return res

# Other functions
alphagruneisen.py 文件源码 项目:pyqha 作者: mauropalumbo75 项目源码 文件源码 阅读 100 收藏 0 点赞 0 评论 0
def c_qv2(T,omega):
    x = omega * kb1 / T 
    expx = math.exp(-x)   # exponential term
    x2 = math.pow(x,2)

    return x2*K_BOLTZMANN_RY*expx/math.pow(expx-1.0,2)


################################################################################
# 
# This function computes the thermal expansions alpha using the Gruneisein 
# parameters
# more comments to be added
# First with min0, freq and grun T-independent
#
# More ibrav types to be implemented
tfa.py 文件源码 项目:brainiak 作者: brainiak 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _get_max_sigma(self, R):
        """Calculate maximum sigma of scanner RAS coordinates

        Parameters
        ----------

        R : 2D array, with shape [n_voxel, n_dim]
            The coordinate matrix of fMRI data from one subject

        Returns
        -------

        max_sigma : float
            The maximum sigma of scanner coordinates.

        """

        max_sigma = 2.0 * math.pow(np.nanmax(np.std(R, axis=0)), 2)
        return max_sigma
agent_rl.py 文件源码 项目:rl_trading 作者: ucaiado 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def get_epsilon_k(self):
        '''
        Get $\epsilon_k$ according to the exploration schedule
        '''
        trial = self.env.count_trials - 2  # ?
        if self.decayfun == 'tpower':
            # e = a^t, where 0 < z < 1
            # self.f_epsilon = math.pow(0.9675, trial)  # for 100 trials
            self.f_epsilon = math.pow(0.9333, trial)  # for 50 trials

        elif self.decayfun == 'trig':
            # e = cos(at), where 0 < z < 1
            # self.f_epsilon = math.cos(0.0168 * trial)  # for 100 trials
            self.f_epsilon = math.cos(0.03457 * trial)  # for 50 trials
        else:
            # self.f_epsilon = max(0., 1. - (1./45. * trial))  # for 50 trials
            self.f_epsilon = max(0., 1. - (1./95. * trial))  # for 100 trials
        return self.f_epsilon
utils.py 文件源码 项目:ExperimentPackage_PyTorch 作者: ICEORY 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def getlearningrate(epoch, opt):
    # update lr
    lr = opt.LR
    if opt.lrPolicy == "multistep":
        if epoch + 1.0 > opt.nEpochs * opt.ratio[1]:  # 0.6 or 0.8
            lr = opt.LR * 0.01
        elif epoch + 1.0 > opt.nEpochs * opt.ratio[0]:  # 0.4 or 0.6
            lr = opt.LR * 0.1
    elif opt.lrPolicy == "linear":
        k = (0.001-opt.LR)/math.ceil(opt.nEpochs/2.0)
        lr = k*math.ceil((epoch+1)/opt.step)+opt.LR
    elif opt.lrPolicy == "exp":
        power = math.floor((epoch+1)/opt.step)
        lr = lr*math.pow(opt.gamma, power)
    elif opt.lrPolicy == "fixed":
        lr = opt.LR
    else:
        assert False, "invalid lr policy"

    return lr
ai_feiji.py 文件源码 项目:py_game_AI_plane 作者: B9527 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_inputs_values(self, enemes, input_size=4):
        inputs = []

        for i in range(input_size):
            inputs.append(0.0)

        inputs[0] = (self.x * 1.0 / SCREEN_SIZE[0])
        index = 1
        for eneme in enemes:
            inputs[index] = eneme.x * 1.0 / SCREEN_SIZE[0]
            index += 1
            inputs[index] = eneme.y * 1.0 / SCREEN_SIZE[1]
            index += 1
        # if len(enemes) > 0:
        # distance = math.sqrt(math.pow(enemes[0].x + enemes[0].width/2 - self.x + self.width/2, 2) + math.pow(enemes[0].y + enemes[0].height/2 - self.y + self.height/2, 2));
        if len(enemes) > 0 and self.x < enemes[0].x:
            inputs[index] = -1.0
            index += 1
        else:
            inputs[index] = 1.0

        return inputs
spectrum.py 文件源码 项目:kaleidoscope 作者: blenderskool 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def hex_to_rgb(value, alpha=True):
    """Convets a Hex code to a Blender RGB Value"""
    gamma = 2.2
    value = value.lstrip('#')
    lv = len(value)
    fin = list(int(value[i:i + lv // 3], 16) for i in range(0, lv, lv // 3))
    r = pow(fin[0] / 255, gamma)
    g = pow(fin[1] / 255, gamma)
    b = pow(fin[2] / 255, gamma)
    fin.clear()
    fin.append(r)
    fin.append(g)
    fin.append(b)
    if alpha == True:
        fin.append(1.0)
    return tuple(fin)
spectrum.py 文件源码 项目:kaleidoscope 作者: blenderskool 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def rgb_to_hex(rgb):
    """Converts Blender RGB Value to Hex code"""
    gamma = 1/2.2
    fin = list(rgb)
    r = fin[0]*255
    g = fin[1]*255
    b = fin[2]*255
    r = int(255*pow(r / 255, gamma))
    g = int(255*pow(g / 255, gamma))
    b = int(255*pow(b / 255, gamma))
    fin.clear()
    fin.append(r)
    fin.append(g)
    fin.append(b)
    fin = tuple(fin)
    return '#%02x%02x%02x' % fin
fileinfo.py 文件源码 项目:Stitch 作者: nathanlopez 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def convertSize(size):
   if (size == 0):
       return '0 Bytes'
   size_name = ("Bytes", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB")
   i = int(math.floor(math.log(size,1024)))
   p = math.pow(1024,i)
   s = round(size/p,2)
   return '{} {}'.format(s,size_name[i])

#http://stackoverflow.com/questions/1392413/calculating-a-directory-size-using-python
stitch_utils.py 文件源码 项目:Stitch 作者: nathanlopez 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def convertSize(size):
   if (size == 0):
       return '0 Bytes'
   size_name = ("Bytes", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB")
   i = int(math.floor(math.log(size,1024)))
   p = math.pow(1024,i)
   s = round(size/p,2)
   return '{} {}'.format(s,size_name[i])
causal_grammar_summerdata.py 文件源码 项目:Causality 作者: vcla 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def weibull(t1, t2, lam, k):
    return 1 - exp(pow(t1 / lam,k) - pow(t2 / lam, k))
gen.py 文件源码 项目:tree-gen 作者: friggog 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def calc_stem_radius(self, stem):
        """Calculate radius of this stem as defined in paper"""
        if stem.depth == 0:  # trunk
            result = stem.length * self.param.ratio * self.param.radius_mod[0]
        else:  # other
            result = self.param.radius_mod[stem.depth] * stem.parent.radius * pow((
                stem.length / stem.parent.length), self.param.ratio_power)
            result = max(0.005, result)
            result = min(stem.radius_limit, result)
        return result
gen.py 文件源码 项目:tree-gen 作者: friggog 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def shape_ratio(self, shape, ratio):
        """Calculate shape ratio as defined in paper"""
        if shape == 1:  # spherical
            result = 0.2 + 0.8 * sin(pi * ratio)
        elif shape == 2:  # hemispherical
            result = 0.2 + 0.8 * sin(0.5 * pi * ratio)
        elif shape == 3:  # cylindrical
            result = 1.0
        elif shape == 4:  # tapered cylindrical
            result = 0.5 + 0.5 * ratio
        elif shape == 5:  # flame
            if ratio <= 0.7:
                result = ratio / 0.7
            else:
                result = (1.0 - ratio) / 0.3
        elif shape == 6:  # inverse conical
            result = 1.0 - 0.8 * ratio
        elif shape == 7:  # tend flame
            if ratio <= 0.7:
                result = 0.5 + 0.5 * ratio / 0.7
            else:
                result = 0.5 + 0.5 * (1.0 - ratio) / 0.3
        elif shape == 8:  # envelope
            if ratio < 0 or ratio > 1:
                result = 0.0
            elif ratio < 1 - self.param.prune_width_peak:
                result = pow(ratio / (1 - self.param.prune_width_peak),
                             self.param.prune_power_high)
            else:
                result = pow((1 - ratio) / (1 - self.param.prune_width_peak),
                             self.param.prune_power_low)
        else:  # conical (0)
            result = 0.2 + 0.8 * ratio
        return result


问题


面经


文章

微信
公众号

扫码关注公众号