python类cos()的实例源码

material.py 文件源码 项目:j3dview 作者: blank63 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def create_matrix(self):
        c = cos(radians(self.rotation))
        s = sin(radians(self.rotation))
        R = numpy.matrix([[c,-s,0],[s,c,0],[0,0,1]])
        S = numpy.matrix([[self.scale_s,0,0],[0,self.scale_t,0],[0,0,1]])
        C = numpy.matrix([[1,0,self.center_s],[0,1,self.center_t],[0,0,1]])
        T = numpy.matrix([[1,0,self.translation_s],[0,1,self.translation_t],[0,0,1]])

        # Only types 0x00, 0x06, 0x07, 0x08 and 0x09 have been tested
        if self.matrix_type in {0x00,0x02,0x0A,0x0B,0x80}:
            P = numpy.matrix([[1,0,0,0],[0,1,0,0],[0,0,0,1]])
        elif self.matrix_type == 0x06:
            P = numpy.matrix([[0.5,0,0,0.5],[0,-0.5,0,0.5],[0,0,0,1]])
        elif self.matrix_type == 0x07:
            P = numpy.matrix([[0.5,0,0.5,0],[0,-0.5,0.5,0],[0,0,1,0]])
        elif self.matrix_type in {0x08,0x09}:
            P = numpy.matrix([[0.5,0,0.5,0],[0,-0.5,0.5,0],[0,0,1,0]])*numpy.matrix(self.projection_matrix)
        else:
            raise ValueError('invalid texture matrix type')

        M = T*C*S*R*C.I*P

        if self.shape == gx.TG_MTX2x4:
            return M[:2,:]
        elif self.shape == gx.TG_MTX3x4:
            return M
        else:
            raise ValueError('invalid texture matrix shape')
ttk1.py 文件源码 项目:j3dview 作者: blank63 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def update(self,time):
        scale_x = self.scale_x.interpolate(time)
        scale_y = self.scale_y.interpolate(time)
        scale_z = self.scale_z.interpolate(time)
        rotation_x = self.rotation_x.interpolate(time)
        rotation_y = self.rotation_y.interpolate(time)
        rotation_z = self.rotation_z.interpolate(time)
        translation_x = self.translation_x.interpolate(time)
        translation_y = self.translation_y.interpolate(time)
        translation_z = self.translation_z.interpolate(time)

        cx = cos(radians(rotation_x))
        sx = sin(radians(rotation_x))
        cy = cos(radians(rotation_y))
        sy = sin(radians(rotation_y))
        cz = cos(radians(rotation_z))
        sz = sin(radians(rotation_z))

        R = numpy.matrix([[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,1.0]]) #<-?
        R[0,0] = cy*cz
        R[0,1] = (sx*sy*cz - cx*sz)
        R[0,2] = (cx*sy*cz + sx*sz)
        R[1,0] = cy*sz
        R[1,1] = (sx*sy*sz + cx*cz)
        R[1,2] = (cx*sy*sz - sx*cz)
        R[2,0] = -sy
        R[2,1] = sx*cy
        R[2,2] = cx*cy

        S = numpy.matrix([[scale_x,0,0,0],[0,scale_y,0,0],[0,0,scale_z,0],[0,0,0,1]])
        C = numpy.matrix([[1,0,0,self.center_x],[0,1,0,self.center_y],[0,0,1,self.center_z],[0,0,0,1]])
        T = numpy.matrix([[1,0,0,translation_x],[0,1,0,translation_y],[0,0,1,translation_z],[0,0,0,1]])

        self.texture_matrix[:] = (T*C*S*R*C.I)[:self.row_count,:]
viewer_widget.py 文件源码 项目:j3dview 作者: blank63 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def rotation(axis_x,axis_y,axis_z,angle):
        s = sin(angle/2)
        return Quarternion(cos(angle/2),s*axis_x,s*axis_y,s*axis_z)
runRIPETraceroute.py 文件源码 项目:netra 作者: akshah 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def haversine(lon1, lat1, lon2, lat2):
    """
    Calculate the great circle distance between two points
    on the earth (specified in decimal degrees)
    """
    # convert decimal degrees to radians
    lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
    # haversine formula
    dlon = lon2 - lon1
    dlat = lat2 - lat1
    a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
    c = 2 * asin(sqrt(a))
    km = 6367 * c
    return km
character.py 文件源码 项目:pycraft 作者: traverseda 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def get_motion_vector(self):
        """Returns the current motion vector indicating the velocity of the player.

        Returns
        -------
        vector : tuple of len 3
            Tuple containing the velocity in x, y, and z respectively.
        """
        if any(self.strafe):
            x, y = self.rotation
            strafe = math.degrees(math.atan2(*self.strafe))
            y_angle = math.radians(y)
            x_angle = math.radians(x + strafe)
            if self.flying:
                m = math.cos(y_angle)
                dy = math.sin(y_angle)
                if self.strafe[1]:
                    # Moving left or right.
                    dy = 0.0
                    m = 1
                if self.strafe[0] > 0:
                    # Moving backwards.
                    dy *= -1
                # When you are flying up or down, you have less left and right motion.
                dx = math.cos(x_angle) * m
                dz = math.sin(x_angle) * m
            else:
                dy = 0.0
                dx = math.cos(x_angle)
                dz = math.sin(x_angle)
        else:
            dy = 0.0
            dx = 0.0
            dz = 0.0
        dy += self.strafe_z
        return dx, dy, dz
player.py 文件源码 项目:pycraft 作者: traverseda 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def get_sight_vector(self):
        """Returns the current line of sight vector indicating the direction the
        player is looking.
        """
        x, y = self.rotation
        # y ranges from -90 to 90, or -pi/2 to pi/2, so m ranges from 0 to 1 and
        # is 1 when looking ahead parallel to the ground and 0 when looking
        # straight up or down.
        m = math.cos(math.radians(y))
        # dy ranges from -1 to 1 and is -1 when looking straight down and 1 when
        # looking straight up.
        dy = math.sin(math.radians(y))
        dx = math.cos(math.radians(x - 90)) * m
        dz = math.sin(math.radians(x - 90)) * m
        return dx, dy, dz
gs_running.py 文件源码 项目:pycraft 作者: traverseda 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def set_3d(self, size):
        """Configure OpenGL to draw in 3d."""
        width, height = size
        GL.glEnable(GL.GL_DEPTH_TEST)
        GL.glViewport(0, 0, width, height)
        GL.glMatrixMode(GL.GL_PROJECTION)
        GL.glLoadIdentity()
        GL.gluPerspective(65.0, width / float(height), 0.1, 60.0)
        GL.glMatrixMode(GL.GL_MODELVIEW)
        GL.glLoadIdentity()
        x, y = self.player.rotation
        GL.glRotatef(x, 0, 1, 0)
        GL.glRotatef(-y, math.cos(math.radians(x)), 0, math.sin(math.radians(x)))
        x, y, z = self.player.position
        GL.glTranslatef(-x, -y, -z)
quaternion.py 文件源码 项目:pybot 作者: spillai 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def from_angle_axis(cls, theta, axis):
        """ Construct Quaternion from axis-angle representation """
        x, y, z = axis
        norm = math.sqrt(x*x + y*y + z*z)
        if 0 == norm:
            return cls([0, 0, 0, 1])
        t = math.sin(theta/2) / norm;
        return cls([x*t, y*t, z*t, math.cos(theta/2)])

    # Properties
transformations.py 文件源码 项目:pybot 作者: spillai 项目源码 文件源码 阅读 55 收藏 0 点赞 0 评论 0
def orthogonalization_matrix(lengths, angles):
    """Return orthogonalization matrix for crystallographic cell coordinates.

    Angles are expected in degrees.

    The de-orthogonalization matrix is the inverse.

    >>> O = orthogonalization_matrix((10., 10., 10.), (90., 90., 90.))
    >>> numpy.allclose(O[:3, :3], numpy.identity(3, float) * 10)
    True
    >>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7])
    >>> numpy.allclose(numpy.sum(O), 43.063229)
    True

    """
    a, b, c = lengths
    angles = numpy.radians(angles)
    sina, sinb, _ = numpy.sin(angles)
    cosa, cosb, cosg = numpy.cos(angles)
    co = (cosa * cosb - cosg) / (sina * sinb)
    return numpy.array((
        ( a*sinb*math.sqrt(1.0-co*co),  0.0,    0.0, 0.0),
        (-a*sinb*co,                    b*sina, 0.0, 0.0),
        ( a*cosb,                       b*cosa, c,   0.0),
        ( 0.0,                          0.0,    0.0, 1.0)),
        dtype=numpy.float64)
transformations.py 文件源码 项目:pybot 作者: spillai 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def random_quaternion(rand=None):
    """Return uniform random unit quaternion.

    rand: array like or None
        Three independent random variables that are uniformly distributed
        between 0 and 1.

    >>> q = random_quaternion()
    >>> numpy.allclose(1.0, vector_norm(q))
    True
    >>> q = random_quaternion(numpy.random.random(3))
    >>> q.shape
    (4,)

    """
    if rand is None:
        rand = numpy.random.rand(3)
    else:
        assert len(rand) == 3
    r1 = numpy.sqrt(1.0 - rand[0])
    r2 = numpy.sqrt(rand[0])
    pi2 = math.pi * 2.0
    t1 = pi2 * rand[1]
    t2 = pi2 * rand[2]
    return numpy.array((numpy.sin(t1)*r1,
                        numpy.cos(t1)*r1,
                        numpy.sin(t2)*r2,
                        numpy.cos(t2)*r2), dtype=numpy.float64)
basic_model.py 文件源码 项目:sea-lion-counter 作者: rdinse 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def applyLinearTransformToCoords(self, coords, angle, shear_x, shear_y, scale, \
                                   size_in, size_out):
    '''Apply the image transformation specified by three parameters to a list of
    coordinates. The anchor point of the transofrmation is the center of the tile.

    Args:
      x: list of coordinates.
      angle: Angle by which the image is rotated.
      shear_x: Shearing factor along the x-axis by which the image is sheared.
      shear_y: Shearing factor along the x-axis by which the image is sheared.
      scale: Scaling factor by which the image is scaled.

    Returns:
      A list of transformed coordinates.

    '''
    s_in = (size_in, size_in)
    s_out = (size_out, size_out)
    c_in = .5 * np.asarray(s_in, dtype=np.float64).reshape((1, 2))
    c_out = .5 * np.asarray(s_out, dtype=np.float64).reshape((1, 2)) 

    M_rot = np.asarray([[math.cos(angle), -math.sin(angle)], \
                        [math.sin(angle),  math.cos(angle)]])
    M_shear = np.asarray([[1., shear_x], [shear_y, 1.]])
    M = np.dot(M_rot, M_shear)
    M *= scale  # Without translation, it does not matter whether scale is
                # applied first or last.

    coords = coords.astype(np.float64)
    coords -= c_in
    coords = np.dot(M.T, coords.T).T
    coords += c_out
    return np.round(coords).astype(np.int32)


  # tf augmentation methods
  # TODO https://github.com/tensorflow/benchmarks/blob/master/scripts/tf_cnn_benchmarks/preprocessing.py
transform.py 文件源码 项目:otRebuilder 作者: Pal3love 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def rotate(self, angle):
        """Return a new transformation, rotated by 'angle' (radians).

        Example:
            >>> import math
            >>> t = Transform()
            >>> t.rotate(math.pi / 2)
            <Transform [0 1 -1 0 0 0]>
            >>>
        """
        import math
        c = _normSinCos(math.cos(angle))
        s = _normSinCos(math.sin(angle))
        return self.transform((c, s, -s, c, 0, 0))
image_utils.py 文件源码 项目:lung-cancer-detector 作者: YichenGong 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def img_affine_aug_pipeline_2d(img, op_str='rts', rotate_angle_range=5, translate_range=3, shear_range=3, random_mode=True, probability=0.5):
    if random_mode:
        if random.random() < 0.5:
            return img

    mat = np.identity(3)
    for op in op_str:
        if op == 'r':
            rad = math.radian(((random.random() * 2) - 1) * rotate_angle_range)
            cos = math.cos(rad)
            sin = math.sin(rad)
            rot_mat = np.identity(3)
            rot_mat[0][0] = cos
            rot_mat[0][1] = sin
            rot_mat[1][0] = -sin
            rot_mat[1][1] = cos
            mat = np.dot(mat, rot_mat)
        elif op == 't':
            dx = ((random.random() * 2) - 1) * translate_range
            dy = ((random.random() * 2) - 1) * translate_range
            shift_mat = np.identity(3)
            shift_mat[0][2] = dx
            shift_mat[1][2] = dy
            mat = np.dot(mat, shift_mat)
        elif op == 's':
            dx = ((random.random() * 2) - 1) * shear_range
            dy = ((random.random() * 2) - 1) * shear_range
            shear_mat = np.identity(3)
            shear_mat[0][1] = dx
            shear_mat[1][0] = dy
            mat = np.dot(mat, shear_mat)
        else:
            continue

    affine_mat = np.array([mat[0], mat[1]])
    return apply_affine(img, affine_mat), affine_mat
robot.py 文件源码 项目:sc8pr 作者: dmaccarthy 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def checkFront(self):
        "Update the front color sensor"

        # Get sensor position
        pos = delta(self.pos, vec2d(-self.radius, self.angle))

        # Sensor distance to edge of sketch
        sk = self.sketch
        if sk.weight:
            obj = sk
            prox = _distToWall(pos, self.angle, self.sensorWidth, *sk.size)
        else: obj = prox = None

        # Find closest object within sensor width
        u = vec2d(1, self.angle)
        sw = self.sensorWidth * DEG
        for gr in self.sensorObjects(sk):
            if gr is not self and gr.avgColor and hasattr(gr, "rect"):
                dr = delta(gr.rect.center, pos)
                d = hypot(*dr)
                r = gr.radius
                if r >= d:
                    prox = 0
                    obj = gr
                elif prox is None or d - r < prox:
                    minDot = cos(min(sw + asin(r/d), pi / 2))
                    x = (1 - sprod(u, dr) / d) / (1 - minDot)
                    if x < 1:
                        obj = gr
                        prox = (d - r) * (1 - x) + x * sqrt(d*d-r*r)

        # Save data
        self.closestObject = obj
        c = rgba(sk.border if obj is sk
            else obj.avgColor if obj else (0,0,0))
        self.sensorFront = noise(divAlpha(c), self.sensorNoise, 255)
        self.proximity = None if prox is None else round(prox)
geom.py 文件源码 项目:sc8pr 作者: dmaccarthy 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def vec2d(r, a, deg=True):
    "2D Polar to Cartesian conversion"
    if deg: a *= DEG
    return r * cos(a), r * sin(a)
geom.py 文件源码 项目:sc8pr 作者: dmaccarthy 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _matrix(rotate=0, scale=1, rev=False):
    "Create a 2x2 matrix (as a 4-tuple) to perform a scale transformation and a rotation"
    sx, sy = (scale, scale) if type(scale) in (float, int) else scale
    if rotate:
        rotate *= DEG
        c, s = cos(rotate), sin(rotate)
    else: c, s = 1, 0
    if rev: # Rotate before scaling
        return sx * c, -sx * s, sy * s, sy * c
    else:   # Scale before rotating
        return sx * c, -sy * s, sx * s, sy * c
view3d_idx_view2.py 文件源码 项目:mesh_doshape_tools 作者: YHOYO 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def generate_points(width, height):
    amp = 5  # radius fillet

    width += 2
    height += 4
    width = ((width/2) - amp) + 2
    height -= (2*amp)

    pos_list, final_list = [], []

    n_points = 12
    seg_angle = 2 * math.pi / n_points
    for i in range(n_points + 1):
        angle = i * seg_angle
        x = math.cos(angle) * amp
        y = math.sin(angle) * amp
        pos_list.append([x, -y])

    w_list, h_list = [1, -1, -1, 1], [-1, -1, 1, 1]
    slice_list = [[i, i+4] for i in range(0, n_points, 3)]

    for idx, (start, end) in enumerate(slice_list):
        point_array = pos_list[start:end]
        w = width * w_list[idx]
        h = height * h_list[idx]
        final_list += adjust_list(point_array, w, h)

    return final_list
transformations.py 文件源码 项目:Neural-Networks-for-Inverse-Kinematics 作者: paramrajpura 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def orthogonalization_matrix(lengths, angles):
    """Return orthogonalization matrix for crystallographic cell coordinates.

    Angles are expected in degrees.

    The de-orthogonalization matrix is the inverse.

    >>> O = orthogonalization_matrix([10, 10, 10], [90, 90, 90])
    >>> numpy.allclose(O[:3, :3], numpy.identity(3, float) * 10)
    True
    >>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7])
    >>> numpy.allclose(numpy.sum(O), 43.063229)
    True

    """
    a, b, c = lengths
    angles = numpy.radians(angles)
    sina, sinb, _ = numpy.sin(angles)
    cosa, cosb, cosg = numpy.cos(angles)
    co = (cosa * cosb - cosg) / (sina * sinb)
    return numpy.array([
        [ a*sinb*math.sqrt(1.0-co*co),  0.0,    0.0, 0.0],
        [-a*sinb*co,                    b*sina, 0.0, 0.0],
        [ a*cosb,                       b*cosa, c,   0.0],
        [ 0.0,                          0.0,    0.0, 1.0]])
transformations.py 文件源码 项目:Neural-Networks-for-Inverse-Kinematics 作者: paramrajpura 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def quaternion_about_axis(angle, axis):
    """Return quaternion for rotation about axis.

    >>> q = quaternion_about_axis(0.123, [1, 0, 0])
    >>> numpy.allclose(q, [0.99810947, 0.06146124, 0, 0])
    True

    """
    q = numpy.array([0.0, axis[0], axis[1], axis[2]])
    qlen = vector_norm(q)
    if qlen > _EPS:
        q *= math.sin(angle/2.0) / qlen
    q[0] = math.cos(angle/2.0)
    return q
world_model.py 文件源码 项目:robocup-soccer 作者: kengz 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def get_object_absolute_coords(self, obj):
        """
        Determines the absolute coordinates of the given object based on the
        agent's current position.  Returns None if the coordinates can't be
        calculated.
        """

        # we can't calculate this without a distance to the object
        if obj.distance is None:
            return None

        # get the components of the vector to the object
        dx = obj.distance * math.cos(obj.direction)
        dy = obj.distance * math.sin(obj.direction)

        # return the point the object is at relative to our current position
        return (self.abs_coords[0] + dx, self.abs_coords[1] + dy)


问题


面经


文章

微信
公众号

扫码关注公众号