python类floor()的实例源码

test_utils.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_plugin_interval(self):
        for interval in self.intervals:
            self.setUp()
            simple_plugin = SimplePlugin(interval)
            self.trainer.register_plugin(simple_plugin)
            self.trainer.run(epochs=self.num_epochs)
            units = {
                ('iteration', self.num_iters),
                ('epoch', self.num_epochs),
                ('batch', self.num_iters),
                ('update', self.num_iters)
            }
            for unit, num_triggers in units:
                call_every = None
                for i, i_unit in interval:
                    if i_unit == unit:
                        call_every = i
                        break
                if call_every:
                    expected_num_calls = math.floor(num_triggers / call_every)
                else:
                    expected_num_calls = 0
                num_calls = getattr(simple_plugin, 'num_' + unit)
                self.assertEqual(num_calls, expected_num_calls, 0)
test_dataloader.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _test_shuffle(self, loader):
        found_data = {i: 0 for i in range(self.data.size(0))}
        found_labels = {i: 0 for i in range(self.labels.size(0))}
        batch_size = loader.batch_size
        for i, (batch_samples, batch_targets) in enumerate(loader):
            for sample, target in zip(batch_samples, batch_targets):
                for data_point_idx, data_point in enumerate(self.data):
                    if data_point.eq(sample).all():
                        self.assertFalse(found_data[data_point_idx])
                        found_data[data_point_idx] += 1
                        break
                self.assertEqual(target, self.labels.narrow(0, data_point_idx, 1))
                found_labels[data_point_idx] += 1
            self.assertEqual(sum(found_data.values()), (i+1) * batch_size)
            self.assertEqual(sum(found_labels.values()), (i+1) * batch_size)
        self.assertEqual(i, math.floor((len(self.dataset)-1) / batch_size))
test_torch.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_abs(self):
        size = 1000
        max_val = 1000
        original = torch.rand(size).mul(max_val)
        # Tensor filled with values from {-1, 1}
        switch = torch.rand(size).mul(2).floor().mul(2).add(-1)

        types = ['torch.DoubleTensor', 'torch.FloatTensor', 'torch.LongTensor', 'torch.IntTensor']
        for t in types:
            data = original.type(t)
            switch = switch.type(t)
            res = torch.mul(data, switch)
            self.assertEqual(res.abs(), data, 1e-16)

        # Checking that the right abs function is called for LongTensor
        bignumber = 2^31 + 1
        res = torch.LongTensor((-bignumber,))
        self.assertGreater(res.abs()[0], 0)
fileinfo.py 文件源码 项目:Stitch 作者: nathanlopez 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def convertSize(size):
   if (size == 0):
       return '0 Bytes'
   size_name = ("Bytes", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB")
   i = int(math.floor(math.log(size,1024)))
   p = math.pow(1024,i)
   s = round(size/p,2)
   return '{} {}'.format(s,size_name[i])

#http://stackoverflow.com/questions/1392413/calculating-a-directory-size-using-python
stitch_utils.py 文件源码 项目:Stitch 作者: nathanlopez 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def convertSize(size):
   if (size == 0):
       return '0 Bytes'
   size_name = ("Bytes", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB")
   i = int(math.floor(math.log(size,1024)))
   p = math.pow(1024,i)
   s = round(size/p,2)
   return '{} {}'.format(s,size_name[i])
TensorFlowInterface.py 文件源码 项目:IntroToDeepLearning 作者: robb-brown 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def plotFields(layer,fieldShape=None,channel=None,figOffset=1,cmap=None,padding=0.01):
    # Receptive Fields Summary
    try:
        W = layer.W
    except:
        W = layer
    wp = W.eval().transpose();
    if len(np.shape(wp)) < 4:       # Fully connected layer, has no shape
        fields = np.reshape(wp,list(wp.shape[0:-1])+fieldShape) 
    else:           # Convolutional layer already has shape
        features, channels, iy, ix = np.shape(wp)
        if channel is not None:
            fields = wp[:,channel,:,:]
        else:
            fields = np.reshape(wp,[features*channels,iy,ix])

    perRow = int(math.floor(math.sqrt(fields.shape[0])))
    perColumn = int(math.ceil(fields.shape[0]/float(perRow)))

    fig = mpl.figure(figOffset); mpl.clf()

    # Using image grid
    from mpl_toolkits.axes_grid1 import ImageGrid
    grid = ImageGrid(fig,111,nrows_ncols=(perRow,perColumn),axes_pad=padding,cbar_mode='single')
    for i in range(0,np.shape(fields)[0]):
        im = grid[i].imshow(fields[i],cmap=cmap); 

    grid.cbar_axes[0].colorbar(im)
    mpl.title('%s Receptive Fields' % layer.name)

    # old way
    # fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))])
    # tiled = []
    # for i in range(0,perColumn*perRow,perColumn):
    #   tiled.append(np.hstack(fields2[i:i+perColumn]))
    # 
    # tiled = np.vstack(tiled)
    # mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Receptive Fields' % layer.name); mpl.colorbar();
    mpl.figure(figOffset+1); mpl.clf(); mpl.imshow(np.sum(np.abs(fields),0),cmap=cmap); mpl.title('%s Total Absolute Input Dependency' % layer.name); mpl.colorbar()
TensorFlowInterface.py 文件源码 项目:IntroToDeepLearning 作者: robb-brown 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def plotOutput(layer,feed_dict,fieldShape=None,channel=None,figOffset=1,cmap=None):
    # Output summary
    try:
        W = layer.output
    except:
        W = layer
    wp = W.eval(feed_dict=feed_dict);
    if len(np.shape(wp)) < 4:       # Fully connected layer, has no shape
        temp = np.zeros(np.product(fieldShape)); temp[0:np.shape(wp.ravel())[0]] = wp.ravel()
        fields = np.reshape(temp,[1]+fieldShape)
    else:           # Convolutional layer already has shape
        wp = np.rollaxis(wp,3,0)
        features, channels, iy,ix = np.shape(wp)
        if channel is not None:
            fields = wp[:,channel,:,:]
        else:
            fields = np.reshape(wp,[features*channels,iy,ix])

    perRow = int(math.floor(math.sqrt(fields.shape[0])))
    perColumn = int(math.ceil(fields.shape[0]/float(perRow)))
    fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))])
    tiled = []
    for i in range(0,perColumn*perRow,perColumn):
        tiled.append(np.hstack(fields2[i:i+perColumn]))

    tiled = np.vstack(tiled)
    if figOffset is not None:
        mpl.figure(figOffset); mpl.clf(); 

    mpl.imshow(tiled,cmap=cmap); mpl.title('%s Output' % layer.name); mpl.colorbar();
TensorFlowInterface.py 文件源码 项目:IntroToDeepLearning 作者: robb-brown 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def plotFields(layer,fieldShape=None,channel=None,maxFields=25,figName='ReceptiveFields',cmap=None,padding=0.01):
    # Receptive Fields Summary
    W = layer.W
    wp = W.eval().transpose();
    if len(np.shape(wp)) < 4:       # Fully connected layer, has no shape
        fields = np.reshape(wp,list(wp.shape[0:-1])+fieldShape)
    else:           # Convolutional layer already has shape
        features, channels, iy, ix = np.shape(wp)
        if channel is not None:
            fields = wp[:,channel,:,:]
        else:
            fields = np.reshape(wp,[features*channels,iy,ix])

    fieldsN = min(fields.shape[0],maxFields)
    perRow = int(math.floor(math.sqrt(fieldsN)))
    perColumn = int(math.ceil(fieldsN/float(perRow)))

    fig = mpl.figure(figName); mpl.clf()

    # Using image grid
    from mpl_toolkits.axes_grid1 import ImageGrid
    grid = ImageGrid(fig,111,nrows_ncols=(perRow,perColumn),axes_pad=padding,cbar_mode='single')
    for i in range(0,fieldsN):
        im = grid[i].imshow(fields[i],cmap=cmap);

    grid.cbar_axes[0].colorbar(im)
    mpl.title('%s Receptive Fields' % layer.name)

    # old way
    # fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))])
    # tiled = []
    # for i in range(0,perColumn*perRow,perColumn):
    #   tiled.append(np.hstack(fields2[i:i+perColumn]))
    #
    # tiled = np.vstack(tiled)
    # mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Receptive Fields' % layer.name); mpl.colorbar();
    mpl.figure(figName+' Total'); mpl.clf(); mpl.imshow(np.sum(np.abs(fields),0),cmap=cmap); mpl.title('%s Total Absolute Input Dependency' % layer.name); mpl.colorbar()
TensorFlowInterface.py 文件源码 项目:IntroToDeepLearning 作者: robb-brown 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plotOutput(layer,feed_dict,fieldShape=None,channel=None,figOffset=1,cmap=None):
    # Output summary
    W = layer.output
    wp = W.eval(feed_dict=feed_dict);
    if len(np.shape(wp)) < 4:       # Fully connected layer, has no shape
        temp = np.zeros(np.product(fieldShape)); temp[0:np.shape(wp.ravel())[0]] = wp.ravel()
        fields = np.reshape(temp,[1]+fieldShape)
    else:           # Convolutional layer already has shape
        wp = np.rollaxis(wp,3,0)
        features, channels, iy,ix = np.shape(wp)
        if channel is not None:
            fields = wp[:,channel,:,:]
        else:
            fields = np.reshape(wp,[features*channels,iy,ix])

    perRow = int(math.floor(math.sqrt(fields.shape[0])))
    perColumn = int(math.ceil(fields.shape[0]/float(perRow)))
    fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))])
    tiled = []
    for i in range(0,perColumn*perRow,perColumn):
        tiled.append(np.hstack(fields2[i:i+perColumn]))

    tiled = np.vstack(tiled)
    if figOffset is not None:
        mpl.figure(figOffset); mpl.clf();

    mpl.imshow(tiled,cmap=cmap); mpl.title('%s Output' % layer.name); mpl.colorbar();
maplib.py 文件源码 项目:PGO-mapscan-opt 作者: seikur0 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def cover_region_simple(self, location1, location2):  # lat values must be between -90 and +90, lng values must be between -180 and 180
        l_lat1 = location1[0]
        l_lat2 = location2[0]
        l_lng1 = location1[1]
        l_lng2 = location2[1]

        ind_lat_f = 0
        while l_lat1 > self.grid[ind_lat_f][0]:
            ind_lat_f += 1

        ind_lat_t = ind_lat_f + 1
        while ind_lat_t < len(self.grid) and l_lat2 >= self.grid[ind_lat_t][0]:
            ind_lat_t += 1
        points = []
        for ind_lat in range(ind_lat_f, ind_lat_t):
            d_lng = 360.0 / self.grid[ind_lat][1]
            if self.grid[ind_lat][2]:
                c_lng = 0.0
            else:
                c_lng = 0.5

            ind_lng_f = int(ceil(l_lng1 / d_lng - c_lng))
            ind_lng_t = int(floor(l_lng2 / d_lng - c_lng))
            for ind_lng in range(ind_lng_f, ind_lng_t + 1):
                points.append([self.grid[ind_lat][0], d_lng * (ind_lng + c_lng)])

        return points
long_stress_test.py 文件源码 项目:YellowFin_Pytorch 作者: JianGoForIt 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def timeSince(since):
    now = time.time()
    s = now - since
    m = math.floor(s / 60)
    s -= m * 60
    return '%dm %ds' % (m, s)


# In[14]:
nn1_stress_test.py 文件源码 项目:YellowFin_Pytorch 作者: JianGoForIt 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def timeSince(since):
    now = time.time()
    s = now - since
    m = math.floor(s / 60)
    s -= m * 60
    return '%dm %ds' % (m, s)
test-ckpt-disk.py 文件源码 项目:YellowFin_Pytorch 作者: JianGoForIt 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def timeSince(since):
    now = time.time()
    s = now - since
    m = math.floor(s / 60)
    s -= m * 60
    return '%dm %ds' % (m, s)
test-ckpt-memory.py 文件源码 项目:YellowFin_Pytorch 作者: JianGoForIt 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def timeSince(since):
    now = time.time()
    s = now - since
    m = math.floor(s / 60)
    s -= m * 60
    return '%dm %ds' % (m, s)
nn1.py 文件源码 项目:YellowFin_Pytorch 作者: JianGoForIt 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def timeSince(since):
    now = time.time()
    s = now - since
    m = math.floor(s / 60)
    s -= m * 60
    return '%dm %ds' % (m, s)
video_editing_mouse.py 文件源码 项目:Blender-power-sequencer 作者: GDquest 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def find_cut_and_handles_closest_to_mouse(mouse_x, mouse_y):
    """
    takes the mouse's coordinates in the sequencer area and returns the two strips
    who share the cut closest to the mouse, or the strip with the closest handle.
    Use it to find the handle(s) to select with the grab on the fly operator
    """
    view2d = bpy.context.region.view2d

    closest_cut = (None, None)
    distance_to_closest_cut = 1000000.0

    for s in bpy.context.sequences:
        channel_offset = s.channel + 0.5
        start_x, start_y = view2d.view_to_region(s.frame_final_start, channel_offset)
        end_x, end_y = view2d.view_to_region(s.frame_final_start, channel_offset)

        distance_to_start = calculate_distance(start_x, start_y, mouse_x, mouse_y)
        distance_to_end = calculate_distance(end_x, end_y, mouse_x, mouse_y)

        if distance_to_start < distance_to_closest_cut:
            closest_cut = (start_x, start_y)
            distance_to_closest_cut = distance_to_start
        if distance_to_end < distance_to_closest_cut:
            closest_cut = (end_x, end_y)
            distance_to_closest_cut = distance_to_end

    closest_cut_local_coords = view2d.region_to_view(closest_cut[0], closest_cut[1])
    frame, channel = round(closest_cut_local_coords[0]), floor(closest_cut_local_coords[1])
    return frame, channel
prime.py 文件源码 项目:RasterFairy 作者: Quasimondo 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def isPrime(self,n):
        if (n & 1) == 0 or (n > 5 and n % 5 == 0):
            return False

        maxCheck = math.sqrt(n)
        if maxCheck == math.floor(maxCheck):
            return False

        p = self.firstPrime
        while p != None:
            if p.n > maxCheck:
                return True
            if n % p.n == 0:
                return False
            p = p.nextPrime

        divisor = self.lastPrime.n + 2
        while divisor <= maxCheck:
            if not self.isPrime(divisor):
                divisor += 2
                continue
            self.lastPrime = self.lastPrime.setNext(divisor)
            if divisor > maxCheck:
                return True
            if n % divisor == 0:
                return False
            divisor += 2
        return True
rasterfairy.py 文件源码 项目:RasterFairy 作者: Quasimondo 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def getShiftedTriangularArrangement(n):

    t = math.sqrt(8 * n + 1);
    if t != math.floor(t):
        return []

    arrangement = []
    i = 1
    while n>0:
        arrangement.append(i)
        n-=i
        i+=1

    return [{'hex':True,'rows':arrangement,'type':'triangular'}]
rasterfairy.py 文件源码 项目:RasterFairy 作者: Quasimondo 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def getTriangularArrangement(n):

    t = math.sqrt(n);
    if t != math.floor(t):
        return []

    arrangement = []
    i = 1
    while n>0:
        arrangement.append(i)
        n-=i
        i+=2

    return [{'hex':False,'rows':arrangement,'type':'triangular'}]


问题


面经


文章

微信
公众号

扫码关注公众号