def __init__(self,
num,
batch_size=1,
progress_bar=False,
log_epoch=10,
get_fn=None,
cycle=False,
shuffle=True,
stagnant=False,
seed=2,
num_batches=-1):
"""Construct a batch iterator.
Args:
data: numpy.ndarray, (N, D), N is the number of examples, D is the
feature dimension.
labels: numpy.ndarray, (N), N is the number of examples.
batch_size: int, batch size.
"""
self._num = num
self._batch_size = batch_size
self._step = 0
self._num_steps = int(np.ceil(self._num / float(batch_size)))
if num_batches > 0:
self._num_steps = min(self._num_steps, num_batches)
self._pb = None
self._variables = None
self._get_fn = get_fn
self.get_fn = get_fn
self._cycle = cycle
self._shuffle_idx = np.arange(self._num)
self._shuffle = shuffle
self._random = np.random.RandomState(seed)
if shuffle:
self._random.shuffle(self._shuffle_idx)
self._shuffle_flag = False
self._stagnant = stagnant
self._log_epoch = log_epoch
self._log = logger.get()
self._epoch = 0
if progress_bar:
self._pb = pb.get(self._num_steps)
pass
self._mutex = threading.Lock()
pass
python类get()的实例源码
def __init__(self,
num,
batch_size=1,
progress_bar=False,
log_epoch=10,
get_fn=None,
cycle=False,
shuffle=True,
stagnant=False,
seed=2,
num_batches=-1):
"""Construct a batch iterator.
Args:
data: numpy.ndarray, (N, D), N is the number of examples, D is the
feature dimension.
labels: numpy.ndarray, (N), N is the number of examples.
batch_size: int, batch size.
"""
self._num = num
self._batch_size = batch_size
self._step = 0
self._num_steps = int(np.ceil(self._num / float(batch_size)))
if num_batches > 0:
self._num_steps = min(self._num_steps, num_batches)
self._pb = None
self._variables = None
self._get_fn = get_fn
self.get_fn = get_fn
self._cycle = cycle
self._shuffle_idx = np.arange(self._num)
self._shuffle = shuffle
self._random = np.random.RandomState(seed)
if shuffle:
self._random.shuffle(self._shuffle_idx)
self._shuffle_flag = False
self._stagnant = stagnant
self._log_epoch = log_epoch
self._log = logger.get()
self._epoch = 0
if progress_bar:
self._pb = pb.get(self._num_steps)
pass
self._mutex = threading.Lock()
pass
def __init__(self,
num,
batch_size=1,
progress_bar=False,
log_epoch=10,
get_fn=None,
cycle=False,
shuffle=True,
stagnant=False,
seed=2,
num_batches=-1):
"""Construct a batch iterator.
Args:
data: numpy.ndarray, (N, D), N is the number of examples, D is the
feature dimension.
labels: numpy.ndarray, (N), N is the number of examples.
batch_size: int, batch size.
"""
self._num = num
self._batch_size = batch_size
self._step = 0
self._num_steps = int(np.ceil(self._num / float(batch_size)))
if num_batches > 0:
self._num_steps = min(self._num_steps, num_batches)
self._pb = None
self._variables = None
self._get_fn = get_fn
self.get_fn = get_fn
self._cycle = cycle
self._shuffle_idx = np.arange(self._num)
self._shuffle = shuffle
self._random = np.random.RandomState(seed)
if shuffle:
self._random.shuffle(self._shuffle_idx)
self._shuffle_flag = False
self._stagnant = stagnant
self._log_epoch = log_epoch
self._log = logger.get()
self._epoch = 0
if progress_bar:
self._pb = pb.get(self._num_steps)
pass
self._mutex = threading.Lock()
pass